
VOLTA COMPATIBILITY GUIDE FOR
CUDA APPLICATIONS

DA-08649-001_v9.0 | September 2017

Application Note

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | ii

TABLE OF CONTENTS

Chapter 1. Volta Compatibility.. 1
1.1. About this Document...1
1.2. Application Compatibility on Volta.. 1
1.3. Verifying Volta Compatibility for Existing Applications...2

1.3.1. Applications Using CUDA Toolkit 8.0 or Earlier...2
1.3.2. Applications Using CUDA Toolkit 9.0... 2

1.4. Building Applications with Volta Support... 2
1.4.1. Applications Using CUDA Toolkit 8.0 or Earlier...3
1.4.2. Applications Using CUDA Toolkit 9.0... 4
1.4.3. Independent Thread Scheduling Compatibility... 5

Appendix A. Revision History..6

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 1

Chapter 1.
VOLTA COMPATIBILITY

1.1. About this Document
This application note, Volta Compatibility Guide for CUDA Applications, is intended to help
developers ensure that their NVIDIA® CUDA® applications will run on GPUs based on
the NVIDIA® Volta Architecture. This document provides guidance to developers who
are already familiar with programming in CUDA C/C++ and want to make sure that
their software applications are compatible with Volta.

1.2. Application Compatibility on Volta
The NVIDIA CUDA C compiler, nvcc, can be used to generate both architecture-
specific cubin files and forward-compatible PTX versions of each kernel. Each cubin file
targets a specific compute-capability version and is forward-compatible only with GPU
architectures of the same major version number. For example, cubin files that target compute
capability 3.0 are supported on all compute-capability 3.x (Kepler) devices but are not
supported on compute-capability 5.x (Maxwell) or 6.x (Pascal) devices. For this reason,
to ensure forward compatibility with GPU architectures introduced after the application
has been released, it is recommended that all applications include PTX versions of their
kernels.

CUDA Runtime applications containing both cubin and PTX code for a given
architecture will automatically use the cubin by default, keeping the PTX path strictly
for forward-compatibility purposes.

Applications that already include PTX versions of their kernels should work as-is on
Volta-based GPUs. Applications that only support specific GPU architectures via cubin
files, however, will need to be updated to provide Volta-compatible PTX or cubins.

Volta Compatibility

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 2

1.3. Verifying Volta Compatibility for Existing
Applications
The first step is to check that Volta-compatible device code (at least PTX) is compiled
into the application. The following sections show how to accomplish this for
applications built with different CUDA Toolkit versions.

1.3.1. Applications Using CUDA Toolkit 8.0 or Earlier
CUDA applications built using CUDA Toolkit versions 2.1 through 8.0 are compatible
with Volta as long as they are built to include PTX versions of their kernels. To test that
PTX JIT is working for your application, you can do the following:

‣ Download and install the latest driver from http://www.nvidia.com/drivers.
‣ Set the environment variable CUDA_FORCE_PTX_JIT=1.
‣ Launch your application.

When starting a CUDA application for the first time with the above environment flag,
the CUDA driver will JIT-compile the PTX for each CUDA kernel that is used into native
cubin code.

If you set the environment variable above and then launch your program and it works
properly, then you have successfully verified Volta compatibility.

Be sure to unset the CUDA_FORCE_PTX_JIT environment variable when you are done
testing.

1.3.2. Applications Using CUDA Toolkit 9.0
CUDA applications built using CUDA Toolkit 9.0 are compatible with Volta as long
as they are built to include kernels in either Volta-native cubin format (see Building
Applications with Volta Support) or PTX format (see Applications Using CUDA Toolkit
8.0 or Earlier) or both.

1.4. Building Applications with Volta Support
When a CUDA application launches a kernel, the CUDA Runtime determines
the compute capability of each GPU in the system and uses this information to
automatically find the best matching cubin or PTX version of the kernel that is available.
If a cubin file supporting the architecture of the target GPU is available, it is used;
otherwise, the CUDA Runtime will load the PTX and JIT-compile that PTX to the GPU's
native cubin format before launching it. If neither is available, then the kernel launch
will fail.

The method used to build your application with either native cubin or at least PTX
support for Volta depend on the version of the CUDA Toolkit used.

http://www.nvidia.com/drivers

Volta Compatibility

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 3

The main advantages of providing native cubins are as follows:

‣ It saves the end user the time it takes to JIT-compile kernels that are available only
as PTX. All kernels compiled into the application must have native binaries at load
time or else they will be built just-in-time from PTX, including kernels from all
libraries linked to the application, even if those kernels are never launched by the
application. Especially when using large libraries, this JIT compilation can take a
significant amount of time. The CUDA driver will cache the cubins generated as a
result of the PTX JIT, so this is mostly a one-time cost for a given user, but it is time
best avoided whenever possible.

‣ PTX JIT-compiled kernels often cannot take advantage of architectural features
of newer GPUs, meaning that native-compiled code may be faster or of greater
accuracy.

1.4.1. Applications Using CUDA Toolkit 8.0 or Earlier
The compilers included in CUDA Toolkit 8.0 or earlier generate cubin files native to
earlier NVIDIA architectures such as Maxwell and Pascal, but they cannot generate cubin
files native to the Volta architecture. To allow support for Volta and future architectures
when using version 8.0 or earlier of the CUDA Toolkit, the compiler must generate a
PTX version of each kernel.

Below are compiler settings that could be used to build mykernel.cu to run on Maxwell
or Pascal devices natively and on Volta devices via PTX JIT.

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the
back-end compilation target and can either be cubin or PTX or both. Only the back-end
target version(s) specified by the code= clause will be retained in the resulting binary;
at least one must be PTX to provide Volta compatibility.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_61,code=compute_61
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_61,code=compute_61
 -O2 -o mykernel.o -c mykernel.cu

Volta Compatibility

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 4

Alternatively, you may be familiar with the simplified nvcc command-line option -
arch=sm_XX, which is a shorthand equivalent to the following more explicit -gencode=
command-line options used above. -arch=sm_XX expands to the following:

-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a
PTX back-end target by default, it can only specify a single target cubin architecture at a
time, and it is not possible to use multiple -arch= options on the same nvcc command
line, which is why the examples above use -gencode= explicitly.

1.4.2. Applications Using CUDA Toolkit 9.0
With version 9.0 of the CUDA Toolkit, nvcc can generate cubin files native to the Volta
architecture (compute capability 7.0). When using CUDA Toolkit 9.0, to ensure that
nvcc will generate cubin files for all recent GPU architectures as well as a PTX version
for forward compatibility with future GPU architectures, specify the appropriate -
gencode= parameters on the nvcc command line as shown in the examples below.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_70,code=sm_70
 -gencode=arch=compute_70,code=compute_70
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_70,code=sm_70
 -gencode=arch=compute_70,code=compute_70
 -O2 -o mykernel.o -c mykernel.cu

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the
back-end compilation target and can either be cubin or PTX or both. Only the back-end
target version(s) specified by the code= clause will be retained in the resulting binary;
at least one should be PTX to provide compatibility with future architectures.

Also, note that CUDA 9.0 removes support for compute capability 2.x (Fermi) devices.
Any compute_2x and sm_2x flags need to be removed from your compiler commands.

Volta Compatibility

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 5

1.4.3. Independent Thread Scheduling Compatibility
The Volta architecture introduces Independent Thread Scheduling among threads in
a warp. If the developer made assumptions about warp-synchronicity, 1 this feature
can alter the set of threads participating in the executed code compared to previous
architectures. Please see Compute Capability 7.0 in the CUDA C Programming Guide for
details and corrective actions. To aid migration Volta developers can opt-in to the Pascal
scheduling model with the following combination of compiler options.

nvcc -arch=compute_60 -code=sm_70 ...

1 Warp-synchronous refers to an assumption that threads in the same warp are synchronized at every instruction and can,
for example, communicate values without explicit synchronization.

www.nvidia.com
Volta Compatibility Guide for CUDA Applications DA-08649-001_v9.0 | 6

Appendix A.
REVISION HISTORY

Version 1.0

‣ Initial public release.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2010-2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Volta Compatibility
	1.1. About this Document
	1.2. Application Compatibility on Volta
	1.3. Verifying Volta Compatibility for Existing Applications
	1.3.1. Applications Using CUDA Toolkit 8.0 or Earlier
	1.3.2. Applications Using CUDA Toolkit 9.0

	1.4. Building Applications with Volta Support
	1.4.1. Applications Using CUDA Toolkit 8.0 or Earlier
	1.4.2. Applications Using CUDA Toolkit 9.0
	1.4.3. Independent Thread Scheduling Compatibility

	Revision History

