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Chapter 1.
PASCAL TUNING GUIDE

1.1. NVIDIA Pascal Compute Architecture
Pascal is NVIDIA's latest architecture for CUDA compute applications. Pascal retains
and extends the same CUDA programming model provided by previous NVIDIA
architectures such as Kepler and Maxwell, and applications that follow the best practices
for those architectures should typically see speedups on the Pascal architecture without
any code changes. This guide summarizes the ways that an application can be fine-tuned
to gain additional speedups by leveraging Pascal architectural features.1

Pascal architecture comprises two major variants: GP100 and GP104.2 A detailed
overview of the major improvements in GP100 and GP104 over earlier NVIDIA
architectures are described in a pair of white papers entitled NVIDIA Tesla P100: The
Most Advanced Datacenter Accelerator Ever Built for GP100 and NVIDIA GeForce GTX
1080: Gaming Perfected for GP104.

For further details on the programming features discussed in this guide, please refer to
the CUDA C Programming Guide. Some of the Pascal features described in this guide
are specific to either GP100 or GP104, as noted; if not specified, features apply to both
Pascal variants.

1.2. CUDA Best Practices
The performance guidelines and best practices described in the CUDA C Programming
Guide and the CUDA C Best Practices Guide apply to all CUDA-capable GPU
architectures. Programmers must primarily focus on following those recommendations
to achieve the best performance.

The high-priority recommendations from those guides are as follows:

1 Throughout this guide, Fermi refers to devices of compute capability 2.x, Kepler refers to devices of compute capability
3.x, Maxwell refers to devices of compute capability 5.x, and Pascal refers to device of compute capability 6.x.

2 The specific compute capabilities of GP100 and GP104 are 6.0 and 6.1, respectively. The GP102 architecture is similar to
GP104.

http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_1080_Whitepaper_FINAL.pdf
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
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‣ Find ways to parallelize sequential code,
‣ Minimize data transfers between the host and the device,
‣ Adjust kernel launch configuration to maximize device utilization,
‣ Ensure global memory accesses are coalesced,
‣ Minimize redundant accesses to global memory whenever possible,
‣ Avoid long sequences of diverged execution by threads within the same warp.

1.3. Application Compatibility
Before addressing specific performance tuning issues covered in this guide, refer to the
Pascal Compatibility Guide for CUDA Applications to ensure that your application is
compiled in a way that is compatible with Pascal.

1.4. Pascal Tuning

1.4.1. Streaming Multiprocessor
The Pascal Streaming Multiprocessor (SM) is in many respects similar to that of
Maxwell. Pascal further improves the already excellent power efficiency provided by the
Maxwell architecture through both an improved 16-nm FinFET manufacturing process
and various architectural modifications.

1.4.1.1. Instruction Scheduling
Like Maxwell, Pascal employs a power-of-two number of CUDA Cores per partition.
This simplifies scheduling compared to Kepler, since each of the SM's warp schedulers
issue to a dedicated set of CUDA Cores equal to the warp width (32). Each warp
scheduler still has the flexibility to dual-issue (such as issuing a math operation to a
CUDA Core in the same cycle as a memory operation to a load/store unit), but single-
issue is now sufficient to fully utilize all CUDA Cores.

GP100 and GP104 designs incorporate different numbers of CUDA Cores per SM. Like
Maxwell, each GP104 SM provides four warp schedulers managing a total of 128 single-
precision (FP32) and four double-precision (FP64) cores. A GP104 processor provides up
to 20 SMs, and the similar GP102 design provides up to 30 SMs.

By contrast GP100 provides smaller but more numerous SMs. Each GP100 provides up
to 60 SMs.3 Each SM contains two warp schedulers managing a total of 64 FP32 and 32
FP64 cores. The resulting 2:1 ratio of FP32 to FP64 cores aligns well with GP100's new
datapath configuration, allowing Pascal to process FP64 workloads more efficiently than
Kepler GK210, the previous NVIDIA architecture to emphasize FP64 performance.

3 The Tesla P100 has 56 SMs enabled.

http://docs.nvidia.com/cuda/pascal-compatibility-guide/
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1.4.1.2. Occupancy
The maximum number of concurrent warps per SM remains the same as in Maxwell and
Kepler (i.e., 64), and other factors influencing warp occupancy remain similar as well:

‣ The register file size (64k 32-bit registers) is the same as that of Maxwell and Kepler
GK110.

‣ The maximum registers per thread, 255, matches that of Kepler GK110 and Maxwell.
As with previous architectures, experimentation should be used to determine the
optimum balance of register spilling vs. occupancy, however.

‣ The maximum number of thread blocks per SM is 32, the same as Maxwell and an
increase of 2x over Kepler. Compared to Kepler, Pascal should see an automatic
occupancy improvement for kernels with thread blocks of 64 or fewer threads
(shared memory and register file resource requirements permitting).

‣ Shared memory capacity per SM is 64KB for GP100 and 96KB for GP104. For
comparison, Maxwell and Kepler GK210 provided 96KB and up to 112KB of shared
memory, respectively. But each GP100 SM contains fewer CUDA Cores, so the
shared memory available per core actually increases on GP100. The maximum
shared memory per block remains limited at 48KB as with prior architectures (see
Shared Memory Capacity).

As such, developers can expect similar occupancy as on Maxwell without changes
to their application. As a result of scheduling improvements relative to Kepler, warp
occupancy requirements (i.e., available parallelism) needed for maximum device
utilization are generally reduced.

1.4.2. New Arithmetic Primitives

1.4.2.1. FP16 Arithmetic Support
Pascal provides improved FP16 support for applications, like deep learning, that
are tolerant of low floating-point precision. The half type is used to represent FP16
values on the device. As with Kepler and Maxwell, FP16 storage can be used to
reduce the required memory footprint and bandwidth compared to FP32 or FP64
storage. Pascal also adds support for native FP16 instructions. Peak FP16 throughput
is attained by using a paired operation to perform two FP16 instructions per core
simultaneously. To be eligible for the paired operation the operands must be stored in
a half2 vector type. GP100 and GP104 provide different FP16 throughputs. GP100,
designed with training deep neural networks in mind, provides FP16 throughput up
to 2x that of FP32 arithmetic. On GP104, FP16 throughput is lower, 1/64th that of FP32.
However, compensating for reduced FP16 throughput, GP104 provides additional high-
throughput INT8 support not available in GP100.

1.4.2.2. INT8 Dot Product
GP104 provides specialized instructions for two-way and four-way integer dot products.
These are well suited for accelerating Deep Learning inference workloads. The __dp4a
intrinsic computes a dot product of four 8-bit integers with accumulation into a 32-
bit integer. Similarly, __dp2a performs a two-element dot product between two 16-bit

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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integers in one vector, and two 8-bit integers in another with accumulation into a 32-bit
integer. Both instructions offer a throughput equal to that of FP32 arithmetic.

1.4.3. Memory Throughput

1.4.3.1. High Bandwidth Memory 2 DRAM
GP100 uses High Bandwidth Memory 2 (HBM2) for its DRAM. HBM2 memories are
stacked on a single silicon package along with the GPU die. This allows much wider
interfaces at similar power compared to traditional GDDR technology. GP100 is linked
to up to four stacks of HBM2 and uses two 512-bit memory controllers for each stack.
The effective width of the memory bus is then 4096 bits, a significant increase over the
384 bits in GM200. This allows a tremendous boost in peak bandwidth even at reduced
memory clocks. Thus, the GP100 equipped Tesla P100 has a peak bandwidth of 732 GB/
s with a modest 715 MHz memory clock. DRAM access latencies remain similar to those
observed on Maxwell.

In order to hide DRAM latencies at full HBM2 bandwidth, more memory accesses
must be kept in flight compared to GPUs equipped with traditional GDDR5. Helpfully,
the large complement of SMs in GP100 will typically boost the number of concurrent
threads (and thus reads-in-flight) compared to previous architectures. Resource
constrained kernels that are limited to low occupancy may benefit from increasing the
number of concurrent memory accesses per thread.

Like Kepler GK210, the GP100 GPU's register files, shared memories, L1 and L2 caches,
and DRAM are all protected by Single-Error Correct Double-Error Detect (SECDED)
ECC code. When enabling ECC support on a Kepler GK210, the available DRAM
would be reduced by 6.25% to allow for the storage of ECC bits. Fetching ECC bits for
each memory transaction also reduced the effective bandwidth by approximately 20%
compared to the same GPU with ECC disabled. HBM2 memories, on the other hand,
provide dedicated ECC resources, allowing overhead-free ECC protection.4

1.4.3.2. Unified L1/Texture Cache
Like Maxwell, Pascal combines the functionality of the L1 and texture caches into
a unified L1/Texture cache which acts as a coalescing buffer for memory accesses,
gathering up the data requested by the threads of a warp prior to delivery of that data
to the warp. This function previously was served by the separate L1 cache in Fermi and
Kepler.

By default, GP100 caches global loads in the L1/Texture cache. In contrast, GP104 follows
Kepler and Maxwell in caching global loads in L2 only, unless using the LDG read-only
data cache mechanism introduced in Kepler. As with previous architectures, GP104
allows the developer to opt-in to caching all global loads in the unified L1/Texture cache
by passing the -Xptxas -dlcm=ca flag to nvcc at compile time.

Kepler serviced loads at a granularity of 128B when L1 caching of global loads was
enabled and 32B otherwise. On Pascal the data access unit is 32B regardless of whether

4 As an exception, scattered writes to HBM2 see some overhead from ECC but much less than the overhead with similar
access patterns on ECC-protected GDDR5 memory.
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global loads are cached in L1. So it is no longer necessary to turn off L1 caching in order
to reduce wasted global memory transactions associated with uncoalesced accesses.

Unlike Maxwell but similar to Kepler, Pascal caches thread-local memory in the L1
cache. This can mitigate the cost of register spills compared to Maxwell. The balance of
occupancy versus spilling should therefore be re-evaluated to ensure best performance.

Two new device attributes were added in CUDA Toolkit 6.0:
globalL1CacheSupported and localL1CacheSupported. Developers who wish to
have separately-tuned paths for various architecture generations can use these fields to
simplify the path selection process.

Enabling caching of globals in GP104 can affect occupancy. If per-thread-block SM
resource usage would result in zero occupancy with caching enabled, the CUDA
driver will override the caching selection to allow the kernel launch to succeed. This
situation is reported by the profiler.

1.4.4. Atomic Memory Operations
Like Maxwell, Pascal provides native shared memory atomic operations for 32-bit integer
arithmetic, along with native 32 or 64-bit compare-and-swap (CAS). Developers coming
from Kepler, where shared memory atomics were implemented in software using a lock/
update/unlock sequence, should see a large performance improvement particularly for
heavily contended shared-memory atomics.

Pascal also extends atomic addition in global memory to function on FP64 data. The
atomicAdd() function in CUDA has thus been generalized to support 32 and 64-
bit integer and floating-point types. The rounding mode for all floating-point atomic
operations is round-to-nearest-even in Pascal (in Kepler, FP32 atomic addition used
round-to-zero). As in previous generations FP32 atomicAdd() flushes denormalized
values to zero.

For GP100 atomic operations may target the memories of peer GPUs connected through
NVLink. Peer-to-peer atomics over NVLink use the same API as atomics targeting global
memory. GPUs connected via PCIE do not support this feature.

Pascal GPUs provide support system-wide atomic operations targeting migratable
allocations5 If system-wide atomic visibility is desired, operations targeting migratable
memory must specify a system scope by using the atomic[Op]_system() intrinsics6.
Using the device-scope atomics (e.g. atomicAdd()) on migratable memory remains
valid, but enforces atomic visibility only within the local GPU.

Given the potential for incorrect usage of atomic scopes, it is recommended that
applications use a tool like CUDA memcheck to detect and eliminate errors.

As implemented for Pascal, system-wide atomics are intended to allow developers to
experiment with enhanced memory models. They are implemented in software and

5 Migratable, or Unified Memory (UM), allocations are made with cudaMallocManaged() or, for systems with
Heterogeneous Memory Management (HMM) support, malloc().

6 Here [Op] would be one of Add, CAS, etc.
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some care is required to achieve good performance. When an atomic targets a migratable
address backed by a remote memory space, the local processor page-faults so that the
kernel can migrate the appropriate memory page to local memory. Then the usual
hardware instructions are used to execute the atomic. Since the page is now locally
resident, subsequent atomics from the same processor will not result in additional page-
faults. However, atomic updates from different processors can incur frequent page-
faults.

1.4.5. Shared Memory

1.4.5.1. Shared Memory Capacity
For Kepler, shared memory and the L1 cache shared the same on-chip storage. Maxwell
and Pascal, by contrast, provide dedicated space to the shared memory of each SM,
since the functionality of the L1 and texture caches have been merged. This increases
the shared memory space available per SM as compared to Kepler: GP100 offers 64 KB
shared memory per SM, and GP104 provides 96 KB per SM.

This presents several benefits to application developers:

‣ Algorithms with significant shared memory capacity requirements (e.g., radix sort)
see an automatic 33% to 100% boost in capacity per SM on top of the aggregate boost
from higher SM count.

‣ Applications no longer need to select a preference of the L1/shared split for
optimal performance. For purposes of backward compatibility with Fermi and
Kepler, applications may optionally continue to specify such a preference, but the
preference will be ignored on Maxwell and Pascal.

Thread-blocks remain limited to 48 KB of shared memory. For maximum flexibility,
NVIDIA recommends that applications use at most 32 KB of shared memory in any one
thread block. This would, for example, allow at least two thread blocks to fit per
GP100 SM, or 3 thread blocks per GP104 SM.

1.4.5.2. Shared Memory Bandwidth
Kepler provided an optional 8-byte shared memory banking mode, which had the
potential to increase shared memory bandwidth per SM for shared memory accesses
of 8 or 16 bytes. However, applications could only benefit from this when storing these
larger elements in shared memory (i.e., integers and fp32 values saw no benefit), and
only when the developer explicitly opted in to the 8-byte bank mode via the API.

To simplify this, Pascal follows Maxwell in returning to fixed four-byte banks. This
allows, all applications using shared memory to benefit from the higher bandwidth,
without specifying any particular preference via the API.
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1.4.6. Inter-GPU Communication

1.4.6.1. NVLink Interconnect
NVLink is NVIDIA's new high-speed data interconnect. NVLink can be used to
significantly increase performance for both GPU-to-GPU communication and for GPU
access to system memory. GP100 supports up to four NVLink connections with each
connection carrying up to 40 GB/s of bi-directional bandwidth.

NVLink operates transparently within the existing CUDA model. Transfers between
NVLink-connected endpoints are automatically routed through NVLink, rather
than PCIe. The cudaDeviceEnablePeerAccess() API call remains necessary
to enable direct transfers (over either PCIe or NVLink) between GPUs. The
cudaDeviceCanAccessPeer() can be used to determine if peer access is possible
between any pair of GPUs.

1.4.6.2. GPUDirect RDMA Bandwidth
GPUDirect RDMA allows third party devices such as network interface cards (NICs)
to directly access GPU memory. This eliminates unnecessary copy buffers, lowers CPU
overhead, and significantly decreases the latency of MPI send/receive messages from/to
GPU memory. Pascal doubles the delivered RDMA bandwidth when reading data from
the source GPU memory and writing to the target NIC memory over PCIe.

1.4.7. Compute Preemption
Compute Preemption is a new feature specific to GP100. Compute Preemption allows
compute tasks running on the GPU to be interrupted at instruction-level granularity. The
execution context (registers, shared memory, etc.) are swapped to GPU DRAM so that
another application can be swapped in and run. Compute preemption offers two key
advantages for developers:

‣ Long-running kernels no longer need to be broken up into small timeslices to avoid
an unresponsive graphical user interface or kernel timeouts when a GPU is used
simultaneously for compute and graphics.

‣ Interactive kernel debugging on a single-GPU system is now possible.

1.4.8. Unified Memory Improvements
Pascal offers new hardware capabilities to extend Unified Memory (UM) support. An
extended 49-bit virtual addressing space allows Pascal GPUs to address the full 48-bit
virtual address space of modern CPUs as well as the memories of all GPUs in the system
through a single virtual address space, not limited by the physical memory sizes of any
one processor. Pascal GPUs also support memory page faulting. Page faulting allows
applications to access the same managed memory allocations from both host and device
without explicit synchronization. It also removes the need for the CUDA runtime to pre-
synchronize all managed memory allocations before each kernel launch. Instead, when
a kernel accesses a non-resident memory page, it faults, and the page can be migrated
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to the GPU memory on-demand, or mapped into the GPU address space for access over
PCIe/NVLink interfaces.

These features boost performance on Pascal for many typical UM workloads. In cases
where the UM heuristics prove suboptimal, further tuning is possible through a set of
migration hints that can be added to the source code.

On supporting operating system platforms, any memory allocated with the default OS
allocator (for example, malloc or new) can be accessed from both GPU and CPU code
using the same pointer. In fact, all system virtual memory can be accessed from the
GPU. On such systems, there is no need to explicitly allocate managed memory using
cudaMallocManaged().
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Appendix A.
REVISION HISTORY

Version 1.0

‣ Initial Public Release
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