
CUSOLVER LIBRARY

DU-06709-001_v9.0 | September 2017

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
1.1. cuSolverDN: Dense LAPACK..2
1.2. cuSolverSP: Sparse LAPACK..2
1.3. cuSolverRF: Refactorization...3
1.4. Naming Conventions..3
1.5. Asynchronous Execution... 4
1.6. Library Property...5
1.7. Link Openmp.. 5

Chapter 2. Using the cuSolver API... 6
2.1. Thread Safety... 6
2.2. Scalar Parameters.. 6
2.3. Parallelism with Streams.. 6

Chapter 3. cuSolver Types Reference... 7
3.1. cuSolverDN Types... 7

3.1.1. cusolverDnHandle_t... 7
3.1.2. cublasFillMode_t... 7
3.1.3. cublasOperation_t... 7
3.1.4. cusolverEigType_t..8
3.1.5. cusolverEigMode_t...8
3.1.6. cusolverStatus_t... 8

3.2. cuSolverSP Types..8
3.2.1. cusolverSpHandle_t... 8
3.2.2. cusparseMatDescr_t... 9
3.2.3. cusolverStatus_t... 9

3.3. cuSolverRF Types.. 10
3.3.1. cusolverRfHandle_t.. 10
3.3.2. cusolverRfMatrixFormat_t.. 10
3.3.3. cusolverRfNumericBoostReport_t.. 10
3.3.4. cusolverRfResetValuesFastMode_t... 11
3.3.5. cusolverRfFactorization_t...11
3.3.6. cusolverRfTriangularSolve_t.. 11
3.3.7. cusolverRfUnitDiagonal_t... 11
3.3.8. cusolverStatus_t.. 12

Chapter 4. cuSolver Formats Reference...13
4.1. Index Base Format.. 13
4.2. Vector (Dense) Format... 13
4.3. Matrix (Dense) Format..13
4.4. Matrix (CSR) Format.. 14
4.5. Matrix (CSC) Format.. 15

Chapter 5. cuSolverDN: dense LAPACK Function Reference...16

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | iii

5.1. cuSolverDN Helper Function Reference..16
5.1.1. cusolverDnCreate()...16
5.1.2. cusolverDnDestroy()..17
5.1.3. cusolverDnSetStream().. 17
5.1.4. cusolverDnGetStream()..17
5.1.5. cusolverDnCreateSyevjInfo()... 18
5.1.6. cusolverDnDestroySyevjInfo().. 18
5.1.7. cusolverDnXsyevjSetTolerance()... 18
5.1.8. cusolverDnXsyevjSetMaxSweeps()..19
5.1.9. cusolverDnXsyevjSetSortEig()...19
5.1.10. cusolverDnXsyevjGetResidual()... 19
5.1.11. cusolverDnXsyevjGetSweeps().. 20
5.1.12. cusolverDnCreateGesvdjInfo().. 20
5.1.13. cusolverDnDestroyGesvdjInfo()... 21
5.1.14. cusolverDnXgesvdjSetTolerance().. 21
5.1.15. cusolverDnXgesvdjSetMaxSweeps()...21
5.1.16. cusolverDnXgesvdjSetSortEig()..22
5.1.17. cusolverDnXgesvdjGetResidual()..22
5.1.18. cusolverDnXgesvdjGetSweeps()...22

5.2. Dense Linear Solver Reference..23
5.2.1. cusolverDn<t>potrf()...24
5.2.2. cusolverDn<t>potrs()...27
5.2.3. cusolverDn<t>getrf()...29
5.2.4. cusolverDn<t>getrs()...32
5.2.5. cusolverDn<t>geqrf().. 34
5.2.6. cusolverDn<t>ormqr()... 37
5.2.7. cusolverDn<t>orgqr().. 41
5.2.8. cusolverDn<t>sytrf()... 44

5.3. Dense Eigenvalue Solver Reference.. 46
5.3.1. cusolverDn<t>gebrd().. 47
5.3.2. cusolverDn<t>orgbr().. 51
5.3.3. cusolverDn<t>sytrd()...55
5.3.4. cusolverDn<t>ormtr().. 59
5.3.5. cusolverDn<t>orgtr()...63
5.3.6. cusolverDn<t>gesvd().. 66
5.3.7. cusolverDn<t>gesvdj()... 71
5.3.8. cusolverDn<t>gesvdjBatched()... 76
5.3.9. cusolverDn<t>syevd().. 81
5.3.10. cusolverDn<t>sygvd()...85
5.3.11. cusolverDn<t>syevj()... 90
5.3.12. cusolverDn<t>sygvj()... 95
5.3.13. cusolverDn<t>syevjBatched().. 101

Chapter 6. cuSolverSP: sparse LAPACK Function Reference... 106

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | iv

6.1. Helper Function Reference...106
6.1.1. cusolverSpCreate()... 106
6.1.2. cusolverSpDestroy().. 106
6.1.3. cusolverSpSetStream()... 107
6.1.4. cusolverSpXcsrissym().. 107

6.2. High Level Function Reference.. 108
6.2.1. cusolverSp<t>csrlsvlu()...109
6.2.2. cusolverSp<t>csrlsvqr().. 113
6.2.3. cusolverSp<t>csrlsvchol().. 116
6.2.4. cusolverSp<t>csrlsqvqr()... 119
6.2.5. cusolverSp<t>csreigvsi()... 123
6.2.6. cusolverSp<t>csreigs()..127

6.3. Low Level Function Reference.. 129
6.3.1. cusolverSpXcsrsymrcm()... 129
6.3.2. cusolverSpXcsrsymmdq()...131
6.3.3. cusolverSpXcsrsymamd()...132
6.3.4. cusolverSpXcsrperm().. 134
6.3.5. cusolverSpXcsrqrBatched().. 136

6.4. cuda 7.5 Preview.. 144
6.4.1. cusolverSpXcsrlu().. 144

6.4.1.1. cusolverSpCreateCsrluInfo()... 145
6.4.1.2. cusolverSpXcsrluAnalysis()... 145
6.4.1.3. cusolverSpXcsrluBufferInfo()...147
6.4.1.4. cusolverSpXcsrluFactor()... 149
6.4.1.5. cusolverSpXcsrluZeroPivot()... 151
6.4.1.6. cusolverSpXcsrluSolve()...152
6.4.1.7. cusolverSpXcsrluExtract().. 154

6.4.2. cusolverSpXcsrqr().. 157
6.4.2.1. cusolverSpCreateCsrqrInfo()... 157
6.4.2.2. cusolverSpXcsrqrAnalysis()... 158
6.4.2.3. cusolverSpXcsrqrBufferInfo().. 159
6.4.2.4. cusolverSpXcsrqrSetup()..161
6.4.2.5. cusolverSpXcsrqrFactor()... 163
6.4.2.6. cusolverSpXcsrqrZeroPivot()... 165
6.4.2.7. cusolverSpXcsrqrSolve().. 167

6.4.3. cusolverSpXcsrchol()..168
6.4.3.1. cusolverSpCreateCsrcholInfo()...169
6.4.3.2. cusolverSpXcsrcholAnalysis()...169
6.4.3.3. cusolverSpXcsrcholBufferInfo().. 171
6.4.3.4. cusolverSpXcsrcholFactor().. 173
6.4.3.5. cusolverSpXcsrcholZeroPivot()...175
6.4.3.6. cusolverSpXcsrcholSolve()..176

Chapter 7. cuSolverRF: Refactorization Reference..178

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | v

7.1. cusolverRfAccessBundledFactors()...178
7.2. cusolverRfAnalyze()..179
7.3. cusolverRfSetupDevice().. 180
7.4. cusolverRfSetupHost()... 182
7.5. cusolverRfCreate()... 184
7.6. cusolverRfExtractBundledFactorsHost().. 185
7.7. cusolverRfExtractSplitFactorsHost()...186
7.8. cusolverRfDestroy().. 187
7.9. cusolverRfGetMatrixFormat()...187
7.10. cusolverRfGetNumericProperties()... 188
7.11. cusolverRfGetNumericBoostReport()...188
7.12. cusolverRfGetResetValuesFastMode()..189
7.13. cusolverRfGet_Algs()... 189
7.14. cusolverRfRefactor()... 189
7.15. cusolverRfResetValues()..190
7.16. cusolverRfSetMatrixFormat()..191
7.17. cusolverRfSetNumericProperties()... 192
7.18. cusolverRfSetResetValuesFastMode().. 192
7.19. cusolverRfSetAlgs()... 193
7.20. cusolverRfSolve()... 193
7.21. cusolverRfBatchSetupHost()...195
7.22. cusolverRfBatchAnalyze()..197
7.23. cusolverRfBatchResetValues()...198
7.24. cusolverRfBatchRefactor()...199
7.25. cusolverRfBatchSolve()...200
7.26. cusolverRfBatchZeroPivot()... 201

Appendix A. cuSolverRF Examples.. 203
A.1. cuSolverRF In-memory Example... 203
A.2. cuSolverRF-batch Example... 207

Appendix B. CSR QR Batch Examples... 211
B.1. Batched Sparse QR example 1...211
B.2. Batched Sparse QR example 2...215

Appendix C. QR Examples...221
C.1. QR Factorization Dense Linear Solver..221
C.2. orthogonalization.. 225

Appendix D. LU Examples... 231
D.1. LU Factorization... 231

Appendix E. Examples of Dense Eigenvalue Solver.. 236
E.1. Standard Symmetric Dense Eigenvalue Solver.. 236
E.2. Generalized Symmetric-Definite Dense Eigenvalue Solver...................................... 239
E.3. Standard Symmetric Dense Eigenvalue Solver (via Jacobi method)........................... 242
E.4. Generalized Symmetric-Definite Dense Eigenvalue Solver (via Jacobi method)............. 246
E.5. batch eigenvalue solver for dense symmetric matrix..251

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | vi

Appendix F. Examples of Singular Value Decomposition..257
F.1. SVD with singular vectors...257
F.2. SVD with singular vectors (via Jacobi method)... 261
F.3. batch dense SVD solver... 266

Appendix G. Acknowledgements...273
Appendix H. Bibliography..275

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 1

Chapter 1.
INTRODUCTION

The cuSolver library is a high-level package based on the cuBLAS and cuSPARSE
libraries. It combines three separate libraries under a single umbrella, each of which can
be used independently or in concert with other toolkit libraries.

The intent of cuSolver is to provide useful LAPACK-like features, such as common
matrix factorization and triangular solve routines for dense matrices, a sparse
least-squares solver and an eigenvalue solver. In addition cuSolver provides a new
refactorization library useful for solving sequences of matrices with a shared sparsity
pattern.

The first part of cuSolver is called cuSolverDN, and deals with dense matrix
factorization and solve routines such as LU, QR, SVD and LDLT, as well as useful
utilities such as matrix and vector permutations.

Next, cuSolverSP provides a new set of sparse routines based on a sparse QR
factorization. Not all matrices have a good sparsity pattern for parallelism in
factorization, so the cuSolverSP library also provides a CPU path to handle those
sequential-like matrices. For those matrices with abundant parallelism, the GPU path
will deliver higher performance. The library is designed to be called from C and C++.

The final part is cuSolverRF, a sparse re-factorization package that can provide very
good performance when solving a sequence of matrices where only the coefficients are
changed but the sparsity pattern remains the same.

The GPU path of the cuSolver library assumes data is already in the device memory.
It is the responsibility of the developer to allocate memory and to copy data between
GPU memory and CPU memory using standard CUDA runtime API routines, such as
cudaMalloc(), cudaFree(), cudaMemcpy(), and cudaMemcpyAsync().

The cuSolver library requires hardware with a CUDA compute capability (CC) of at
least 2.0 or higher. Please see the NVIDIA CUDA C Programming Guide, Appendix A for
a list of the compute capabilities corresponding to all NVIDIA GPUs.

Introduction

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 2

1.1. cuSolverDN: Dense LAPACK
The cuSolverDN library was designed to solve dense linear systems of the form

where the coefficient matrix , right-hand-side vector and solution vector

The cuSolverDN library provides QR factorization and LU with partial pivoting to
handle a general matrix A, which may be non-symmetric. Cholesky factorization is also
provided for symmetric/Hermitian matrices. For symmetric indefinite matrices, we
provide Bunch-Kaufman (LDL) factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular
value decomposition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in
LAPACK, and provides an API compatible with LAPACK. The user can accelerate these
time-consuming routines with cuSolverDN and keep others in LAPACK without a major
change to existing code.

1.2. cuSolverSP: Sparse LAPACK
The cuSolverSP library was mainly designed to a solve sparse linear system

and the least-squares problem

where sparse matrix , right-hand-side vector and solution vector .
For a linear system, we require m=n.

The core algorithm is based on sparse QR factorization. The matrix A is accepted in CSR
format. If matrix A is symmetric/Hermitian, the user has to provide a full matrix, ie fill
missing lower or upper part.

If matrix A is symmetric positive definite and the user only needs to solve ,
Cholesky factorization can work and the user only needs to provide the lower triangular
part of A.

On top of the linear and least-squares solvers, the cuSolverSP library provides a simple
eigenvalue solver based on shift-inverse power method, and a function to count the
number of eigenvalues contained in a box in the complex plane.

Introduction

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 3

1.3. cuSolverRF: Refactorization
The cuSolverRF library was designed to accelerate solution of sets of linear systems by
fast re-factorization when given new coefficients in the same sparsity pattern

where a sequence of coefficient matrices , right-hand-sides and solutions
 are given for i=1,...,k.

The cuSolverRF library is applicable when the sparsity pattern of the coefficient matrices
 as well as the reordering to minimize fill-in and the pivoting used during the LU

factorization remain the same across these linear systems. In that case, the first linear
system (i=1) requires a full LU factorization, while the subsequent linear systems
(i=2,...,k) require only the LU re-factorization. The later can be performed using the
cuSolverRF library.

Notice that because the sparsity pattern of the coefficient matrices, the reordering and
pivoting remain the same, the sparsity pattern of the resulting triangular factors and

 also remains the same. Therefore, the real difference between the full LU factorization
and LU re-factorization is that the required memory is known ahead of time.

1.4. Naming Conventions
The cuSolverDN library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverDn<t><operation>

where <t> can be S, D, C, Z, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively. <operation> can
be Cholesky factorization (potrf), LU with partial pivoting (getrf), QR factorization
(geqrf) and Bunch-Kaufman factorization (sytrf).

The cuSolverSP library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverSp[Host]<t>[<matrix data
format>]<operation>[<output matrix data format>]<based on>

where cuSolverSp is the GPU path and cusolverSpHost is the corresponding
CPU path. <t> can be S, D, C, Z, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively.

The <matrix data format> is csr, compressed sparse row format.

The <operation> can be ls, lsq, eig, eigs, corresponding to linear solver, least-square
solver, eigenvalue solver and number of eigenvalues in a box, respectively.

Introduction

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 4

The <output matrix data format> can be v or m, corresponding to a vector or a
matrix.

<based on> describes which algorithm is used. For example, qr (sparse QR
factorization) is used in linear solver and least-square solver.

All of the functions have the return type cusolverStatus_t and are explained in more
detail in the chapters that follow.
cuSolverSP API

routine data
format

operation output
format

based on

csrlsvlu csr linear solver (ls) vector (v) LU (lu)
with
partial
pivoting

csrlsvqr csr linear solver (ls) vector (v) QR
factorization
(qr)

csrlsvchol csr linear solver (ls) vector (v) Cholesky
factorization
(chol)

csrlsqvqr csr least-square solver (lsq) vector (v) QR
factorization
(qr)

csreigvsi csr eigenvalue solver (eig) vector (v) shift-
inverse

csreigs csr number of eigenvalues in a
box (eigs)

csrsymrcm csr Symmetric Reverse Cuthill-
McKee (symrcm)

The cuSolverRF library routines are available for data type double. Most of the routines
follow the naming convention:

cusolverRf_<operation>_[[Host]](...)

where the trailing optional Host qualifier indicates the data is accessed on the
host versus on the device, which is the default. The <operation> can be Setup,
Analyze, Refactor, Solve, ResetValues, AccessBundledFactors and
ExtractSplitFactors.

Finally, the return type of the cuSolverRF library routines is cusolverStatus_t.

1.5. Asynchronous Execution
The cuSolver library functions prefer to keep asynchronous execution as much as
possible. Developers can always use the cudaDeviceSynchronize() function to ensure
that the execution of a particular cuSolver library routine has completed.

Introduction

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 5

A developer can also use the cudaMemcpy() routine to copy data from the
device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize() because the call to cudaMemcpy() with the above
parameters is blocking and completes only when the results are ready on the host.

1.6. Library Property
The libraryPropertyType data type is an enumeration of library property types.
(ie. CUDA version X.Y.Z would yield MAJOR_VERSION=X, MINOR_VERSION=Y,
PATCH_LEVEL=Z)

typedef enum libraryPropertyType_t
{
 MAJOR_VERSION,
 MINOR_VERSION,
 PATCH_LEVEL
} libraryPropertyType;

The following code can show the version of cusolver library.

 int major=-1,minor=-1,patch=-1;
 cusolverGetProperty(MAJOR_VERSION, &major);
 cusolverGetProperty(MINOR_VERSION, &minor);
 cusolverGetProperty(PATCH_LEVEL, &patch);
 printf("CUSOLVER Version (Major,Minor,PatchLevel): %d.%d.%d\n",
 major,minor,patch);

1.7. Link Openmp
The cusolver library uses openmp to improve performance of CPU part. The openmp
support is only enabled on Linux platform. The user needs to link openmp library
explicitly on Linux platform, by either compiler option -fopenmp or 3rd party openmp
library, for example, libiomp5 from MKL.

link openmp library by -fopenmp

 nvcc -ccbin g++ -Xcompiler -fopenmp <object files>
 or
 g++ -fopenmp <object files>

link openmp library from Intel MKL

 g++ <object files> -L<path to MKL> -liomp5

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 6

Chapter 2.
USING THE CUSOLVER API

This chapter describes how to use the cuSolver library API. It is not a reference for the
cuSolver API data types and functions; that is provided in subsequent chapters.

2.1. Thread Safety
The library is thread safe and its functions can be called from multiple host threads.

2.2. Scalar Parameters
In the cuSolver API, the scalar parameters can be passed by reference on the host.

2.3. Parallelism with Streams
If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, CUDA streams can be used to overlap these
tasks.

The application can conceptually associate a stream with each task. To achieve the
overlap of computation between the tasks, the developer should create CUDA streams
using the function cudaStreamCreate() and set the stream to be used by each
individual cuSolver library routine by calling for example cusolverDnSetStream()
just before calling the actual cuSolverDN routine. Then, computations performed in
separate streams would be overlapped automatically on the GPU, when possible. This
approach is especially useful when the computation performed by a single task is
relatively small and is not enough to fill the GPU with work, or when there is a data
transfer that can be performed in parallel with the computation.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 7

Chapter 3.
CUSOLVER TYPES REFERENCE

3.1. cuSolverDN Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.
In addition, cuSolverDN uses some familiar types from cuBlas.

3.1.1. cusolverDnHandle_t
This is a pointer type to an opaque cuSolverDN context, which the user must initialize
by calling cusolverDnCreate() prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverDN. The handle created and returned by cusolverDnCreate() must be
passed to every cuSolverDN function.

3.1.2. cublasFillMode_t
The type indicates which part (lower or upper) of the dense matrix was filled and
consequently should be used by the function. Its values correspond to Fortran characters
‘L’ or ‘l’ (lower) and ‘U’ or ‘u’ (upper) that are often used as parameters to legacy
BLAS implementations.

Value Meaning

CUBLAS_FILL_MODE_LOWER the lower part of the matrix is filled

CUBLAS_FILL_MODE_UPPER the upper part of the matrix is filled

3.1.3. cublasOperation_t
The cublasOperation_t type indicates which operation needs to be performed
with the dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-
transpose), ‘T’ or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) that are often
used as parameters to legacy BLAS implementations.

cuSolver Types Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 8

Value Meaning

CUBLAS_OP_N the non-transpose operation is selected

CUBLAS_OP_T the transpose operation is selected

CUBLAS_OP_C the conjugate transpose operation is selected

3.1.4. cusolverEigType_t
The cusolverEigType_t type indicates which type of eigenvalue solver is. Its values
correspond to Fortran integer 1 (A*x = lambda*B*x), 2 (A*B*x = lambda*x), 3 (B*A*x =
lambda*x), used as parameters to legacy LAPACK implementations.

Value Meaning

CUSOLVER_EIG_TYPE_1 A*x = lambda*B*x

CUSOLVER_EIG_TYPE_2 A*B*x = lambda*x

CUSOLVER_EIG_TYPE_3 B*A*x = lambda*x

3.1.5. cusolverEigMode_t
The cusolverEigMode_t type indicates whether or not eigenvectors are computed. Its
values correspond to Fortran character 'N' (only eigenvalues are computed), 'V' (both
eigenvalues and eigenvectors are computed) used as parameters to legacy LAPACK
implementations.

Value Meaning

CUSOLVER_EIG_MODE_NOVECTOR only eigenvalues are computed

CUSOLVER_EIG_MODE_VECTOR both eigenvalues and eigenvectors are computed

3.1.6. cusolverStatus_t
This is the same as cusolverStatus_t in the sparse LAPACK section.

3.2. cuSolverSP Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.

3.2.1. cusolverSpHandle_t
This is a pointer type to an opaque cuSolverSP context, which the user must initialize
by calling cusolverSpCreate() prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverSP. The handle created and returned by cusolverSpCreate() must be passed
to every cuSolverSP function.

cuSolver Types Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 9

3.2.2. cusparseMatDescr_t
We have chosen to keep the same structure as exists in cuSparse to describe the shape
and properties of a matrix. This enables calls to either cuSparse or cuSolver using the
same matrix description.
typedef struct {
 cusparseMatrixType_t MatrixType;
 cusparseFillMode_t FillMode;
 cusparseDiagType_t DiagType;
 cusparseIndexBase_t IndexBase;
} cusparseMatDescr_t;

Please read documenation of CUSPARSE Library to understand each field of
cusparseMatDescr_t.

3.2.3. cusolverStatus_t
This is a status type returned by the library functions and it can have the following
values.

CUSOLVER_STATUS_SUCCESS

The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED

The cuSolver library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSolver routine, or an error in the hardware setup.

To correct: call cusolverCreate() prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
cuSolver library are correctly installed.

CUSOLVER_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuSolver library. This is usually
caused by a cudaMalloc() failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSOLVER_STATUS_INVALID_VALUE

An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSOLVER_STATUS_ARCH_MISMATCH

The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

To correct: compile and run the application on a device with compute
capability 2.0 or above.

CUSOLVER_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

cuSolver Types Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 10

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed.

CUSOLVER_STATUS_INTERNAL_ERROR

An internal cuSolver operation failed. This error is usually caused by a
cudaMemcpyAsync() failure.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED

The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in descrA were set correctly.

3.3. cuSolverRF Types
cuSolverRF only supports double.

3.3.1. cusolverRfHandle_t
The cusolverRfHandle_t is a pointer to an opaque data structure that contains
the cuSolverRF library handle. The user must initialize the handle by calling
cusolverRfCreate() prior to any other cuSolverRF library calls. The handle is passed
to all other cuSolverRF library calls.

3.3.2. cusolverRfMatrixFormat_t
The cusolverRfMatrixFormat_t is an enum that indicates the input/output matrix
format assumed by the cusolverRfSetupDevice(), cusolverRfSetupHost(),
cusolverRfResetValues(), cusolveRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines.

Value Meaning

CUSOLVER_MATRIX_FORMAT_CSR matrix format CSR is assumed. (default)

CUSOLVER_MATRIX_FORMAT_CSC matrix format CSC is assumed.

3.3.3. cusolverRfNumericBoostReport_t
The cusolverRfNumericBoostReport_t is an enum that indicates whether
numeric boosting (of the pivot) was used during the cusolverRfRefactor() and
cusolverRfSolve() routines. The numeric boosting is disabled by default.

Value Meaning

CUSOLVER_NUMERIC_BOOST_NOT_USED numeric boosting not used. (default)

CUSOLVER_NUMERIC_BOOST_USED numeric boosting used.

cuSolver Types Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 11

3.3.4. cusolverRfResetValuesFastMode_t
The cusolverRfResetValuesFastMode_t is an enum that indicates the mode used for
the cusolverRfResetValues() routine. The fast mode requires extra memory and is
recommended only if very fast calls to cusolverRfResetValues() are needed.

Value Meaning

CUSOLVER_RESET_VALUES_FAST_MODE_OFF fast mode disabled. (default)

CUSOLVER_RESET_VALUES_FAST_MODE_ON fast mode enabled.

3.3.5. cusolverRfFactorization_t
The cusolverRfFactorization_t is an enum that indicates which (internal)
algorithm is used for refactorization in the cusolverRfRefactor() routine.

Value Meaning

CUSOLVER_FACTORIZATION_ALG0 algorithm 0. (default)

CUSOLVER_FACTORIZATION_ALG1 algorithm 1.

CUSOLVER_FACTORIZATION_ALG2 algorithm 2. Domino-based scheme.

3.3.6. cusolverRfTriangularSolve_t
The cusolverRfTriangularSolve_t is an enum that indicates which (internal)
algorithm is used for triangular solve in the cusolverRfSolve() routine.

Value Meaning

CUSOLVER_TRIANGULAR_SOLVE_ALG0 algorithm 0.

CUSOLVER_TRIANGULAR_SOLVE_ALG1 algorithm 1. (default)

CUSOLVER_TRIANGULAR_SOLVE_ALG2 algorithm 2. Domino-based scheme.

CUSOLVER_TRIANGULAR_SOLVE_ALG3 algorithm 3. Domino-based scheme.

3.3.7. cusolverRfUnitDiagonal_t
The cusolverRfUnitDiagonal_t is an enum that indicates whether and
where the unit diagonal is stored in the input/output triangular factors
in the cusolverRfSetupDevice(), cusolverRfSetupHost() and
cusolverRfExtractSplitFactorsHost() routines.

Value Meaning

CUSOLVER_UNIT_DIAGONAL_STORED_L unit diagonal is stored in lower triangular factor.
(default)

CUSOLVER_UNIT_DIAGONAL_STORED_U unit diagonal is stored in upper triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_L unit diagonal is assumed in lower triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_U unit diagonal is assumed in upper triangular factor.

cuSolver Types Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 12

3.3.8. cusolverStatus_t
The cusolverStatus_t is an enum that indicates success or failure of the cuSolverRF
library call. It is returned by all the cuSolver library routines, and it uses the same
enumerated values as the sparse and dense Lapack routines.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 13

Chapter 4.
CUSOLVER FORMATS REFERENCE

4.1. Index Base Format
The CSR or CSC format requires either zero-based or one-based index for a sparse
matrix A. The GLU library supports only zero-based indexing. Otherwise, both one-
based and zero-based indexing are supported in cuSolver.

4.2. Vector (Dense) Format
The vectors are assumed to be stored linearly in memory. For example, the vector

is represented as

4.3. Matrix (Dense) Format
The dense matrices are assumed to be stored in column-major order in memory. The
sub-matrix can be accessed using the leading dimension of the original matrix. For
examle, the m*n (sub-)matrix

is represented as

cuSolver Formats Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 14

with its elements arranged linearly in memory as

where lda ≥ m is the leading dimension of A.

4.4. Matrix (CSR) Format
In CSR format the matrix is represented by the following parameters

parameter type size Meaning

n (int) the number of rows (and columns) in the
matrix.

nnz (int) the number of non-zero elements in the
matrix.

csrRowPtr (int *) n+1 the array of offsets corresponding to the start
of each row in the arrays csrColInd and
csrVal. This array has also an extra entry at
the end that stores the number of non-zero
elements in the matrix.

csrColInd (int *) nnz the array of column indices corresponding to
the non-zero elements in the matrix. It is
assumed that this array is sorted by row and
by column within each row.

csrVal (S|D|C|Z)* nnz the array of values corresponding to the non-
zero elements in the matrix. It is assumed
that this array is sorted by row and by
column within each row.

Note that in our CSR format sparse matrices are assumed to be stored in row-major
order, in other words, the index arrays are first sorted by row indices and then within
each row by column indices. Also it is assumed that each pair of row and column indices
appears only once.

For example, the 4x4 matrix

is represented as

cuSolver Formats Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 15

4.5. Matrix (CSC) Format
In CSC format the matrix is represented by the following parameters

parameter type size Meaning

n (int) the number of rows (and columns) in the
matrix.

nnz (int) the number of non-zero elements in the
matrix.

cscColPtr (int *) n+1 the array of offsets corresponding to the start
of each column in the arrays cscRowInd and
cscVal. This array has also an extra entry at
the end that stores the number of non-zero
elements in the matrix.

cscRowInd (int *) nnz the array of row indices corresponding to
the non-zero elements in the matrix. It is
assumed that this array is sorted by column
and by row within each column.

cscVal (S|D|C|Z)* nnz the array of values corresponding to the non-
zero elements in the matrix. It is assumed
that this array is sorted by column and by
row within each column.

Note that in our CSC format sparse matrices are assumed to be stored in column-major
order, in other words, the index arrays are first sorted by column indices and then
within each column by row indices. Also it is assumed that each pair of row and column
indices appears only once.

For example, the 4x4 matrix

is represented as

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 16

Chapter 5.
CUSOLVERDN: DENSE LAPACK FUNCTION
REFERENCE

This chapter describes the API of cuSolverDN, which provides a subset of dense
LAPACK functions.

5.1. cuSolverDN Helper Function Reference
The cuSolverDN helper functions are described in this section.

5.1.1. cusolverDnCreate()

cusolverStatus_t
cusolverDnCreate(cusolverDnHandle_t *handle);

This function initializes the cuSolverDN library and creates a handle on the cuSolverDN
context. It must be called before any other cuSolverDN API function is invoked. It
allocates hardware resources necessary for accessing the GPU.

parameter Memory In/out Meaning

handle host output the pointer to the handle to the
cuSolverDN context.

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 17

5.1.2. cusolverDnDestroy()

cusolverStatus_t
cusolverDnDestroy(cusolverDnHandle_t handle);

This function releases CPU-side resources used by the cuSolverDN library.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

5.1.3. cusolverDnSetStream()

cusolverStatus_t
cusolverDnSetStream(cusolverDnHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverDN library to execute its
routines.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

streamId host input the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

5.1.4. cusolverDnGetStream()

cusolverStatus_t
cusolverDnGetStream(cusolverDnHandle_t handle, cudaStream_t *streamId)

This function sets the stream to be used by the cuSolverDN library to execute its
routines.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

streamId host output the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 18

5.1.5. cusolverDnCreateSyevjInfo()

cusolverStatus_t
cusolverDnCreateSyevjInfo(
 syevjInfo_t *info);

This function creates and initializes the structure of syevj, syevjBatched and sygvj to
default values.

parameter Memory In/out Meaning

info host output the pointer to the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

5.1.6. cusolverDnDestroySyevjInfo()

cusolverStatus_t
cusolverDnDestroySyevjInfo(
 syevjInfo_t info);

This function destroys and releases any memory required by the structure.

parameter Memory In/out Meaning

info host input the pointer to the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the resources are released successfully.

5.1.7. cusolverDnXsyevjSetTolerance()

cusolverStatus_t
cusolverDnXsyevjSetTolerance(
 syevjInfo_t info,
 double tolerance)

This function configures tolerance of syevj.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

tolerance host input accuracy of numerical eigenvalues.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 19

5.1.8. cusolverDnXsyevjSetMaxSweeps()

cusolverStatus_t
cusolverDnXsyevjSetMaxSweeps(
 syevjInfo_t info,
 int max_sweeps)

This function configures maximum number of sweeps in syevj. The default value is
100.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

max_sweeps host input maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

5.1.9. cusolverDnXsyevjSetSortEig()

cusolverStatus_t
cusolverDnXsyevjSetSortEig(
 syevjInfo_t info,
 int sort_eig)

if sort_eig is zero, the eigenvalues are not sorted. This function only works for
syevjBatched. syevj and sygvj always sort eigenvalues in ascending order. By
default, eigenvalues are always sorted in ascending order.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

sort_eig host input if sort_eig is zero, the eigenvalues are
not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

5.1.10. cusolverDnXsyevjGetResidual()

cusolverStatus_t
cusolverDnXsyevjGetResidual(
 cusolverDnHandle_t handle,
 syevjInfo_t info,
 double *residual)

This function reports residual of syevj or sygvj. It does not support
syevjBatched. If the user calls this function after syevjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 20

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of syevj.

residual host output residual of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

5.1.11. cusolverDnXsyevjGetSweeps()

cusolverStatus_t
cusolverDnXsyevjGetSweeps(
 cusolverDnHandle_t handle,
 syevjInfo_t info,
 int *executed_sweeps)

This function reports number of executed sweeps of syevj or sygvj. It does not
support syevjBatched. If the user calls this function after syevjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of syevj.

executed_sweeps host output number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

5.1.12. cusolverDnCreateGesvdjInfo()

cusolverStatus_t
cusolverDnCreateGesvdjInfo(
 gesvdjInfo_t *info);

This function creates and initializes the structure of gesvdj and gesvdjBatched to
default values.

parameter Memory In/out Meaning

info host output the pointer to the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 21

5.1.13. cusolverDnDestroyGesvdjInfo()

cusolverStatus_t
cusolverDnDestroyGesvdjInfo(
 gesvdjInfo_t info);

This function destroys and releases any memory required by the structure.

parameter Memory In/out Meaning

info host input the pointer to the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the resources are released successfully.

5.1.14. cusolverDnXgesvdjSetTolerance()

cusolverStatus_t
cusolverDnXgesvdjSetTolerance(
 gesvdjInfo_t info,
 double tolerance)

This function configures tolerance of gesvdj.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

tolerance host input accuracy of numerical singular values.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

5.1.15. cusolverDnXgesvdjSetMaxSweeps()

cusolverStatus_t
cusolverDnXgesvdjSetMaxSweeps(
 gesvdjInfo_t info,
 int max_sweeps)

This function configures maximum number of sweeps in gesvdj. The default value is
100.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

max_sweeps host input maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 22

5.1.16. cusolverDnXgesvdjSetSortEig()

cusolverStatus_t
cusolverDnXgesvdjSetSortEig(
 gesvdjInfo_t info,
 int sort_svd)

if sort_svd is zero, the singular values are not sorted. This function only works for
gesvdjBatched. gesvdj always sorts singular values in descending order. By default,
singular values are always sorted in descending order.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

sort_svd host input if sort_svd is zero, the singular values
are not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

5.1.17. cusolverDnXgesvdjGetResidual()

cusolverStatus_t
cusolverDnXgesvdjGetResidual(
 cusolverDnHandle_t handle,
 gesvdjInfo_t info,
 double *residual)

This function reports residual of gesvdj. It does not support
gesvdjBatched. If the user calls this function after gesvdjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of gesvdj.

residual host output residual of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

5.1.18. cusolverDnXgesvdjGetSweeps()

cusolverStatus_t
cusolverDnXgesvdjGetSweeps(
 cusolverDnHandle_t handle,
 gesvdjInfo_t info,
 int *executed_sweeps)

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 23

This function reports number of executed sweeps of gesvdj. It does not support
gesvdjBatched. If the user calls this function after gesvdjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of gesvdj.

executed_sweeps host output number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

5.2. Dense Linear Solver Reference
This chapter describes linear solver API of cuSolverDN, including Cholesky
factorization, LU with partial pivoting, QR factorization and Bunch-Kaufman (LDLT)
factorization.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 24

5.2.1. cusolverDn<t>potrf()
These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDpotrf_bufferSize(cusolveDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZpotrf_bufferSize(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *Workspace,
 int Lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 25

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZpotrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *Workspace,
 int Lwork,
 int *devInfo);

This function computes the Cholesky factorization of a Hermitian positive-definite
matrix.

A is a n×n Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A
is processed, and replaced by lower triangular Cholesky factor L.

If input parameter uplo is CUSBLAS_FILL_MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular Cholesky factor U.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
potrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite,
or equivalently some diagonal elements of L or U is not a real number. The output
parameter devInfo would indicate smallest leading minor of A which is not positive
definite.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of potrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 26

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of Workspace, returned by
potrf_bufferSize.

devInfo device output if devInfo = 0, the Cholesky
factorization is successful. if devInfo
= -i, the i-th parameter is wrong. if
devInfo = i, the leading minor of order
i is not positive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 27

5.2.2. cusolverDn<t>potrs()

cusolverStatus_t
cusolverDnSpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const float *A,
 int lda,
 float *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnDpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const double *A,
 int lda,
 double *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnCpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnZpotrs(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 int nrhs,
 const cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 int *devInfo);

This function solves a system of linear equations

where A is a n×n Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

The user has to call potrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding to

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 28

 . If input parameter uplo is CUSBLAS_FILL_MODE_UPPER, A is upper triangular
Cholesky factor U corresponding to .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading
dimension ldb.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of potrs

parameter Memory In/out Meaning

handle host input handle to the cuSolveDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

nrhs host input number of columns of matrix X and B.

A device input <type> array of dimension lda * n with
lda is not less than max(1,n). A is either
lower cholesky factor L or upper Cholesky
factor U.

lda host input leading dimension of two-dimensional
array used to store matrix A.

B device in/out <type> array of dimension ldb * nrhs.
ldb is not less than max(1,n). As an
input, B is right hand side matrix. As an
output, B is the solution matrix.

devInfo device output if devInfo = 0, the Cholesky
factorization is successful. if devInfo =
-i, the i-th parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 29

5.2.3. cusolverDn<t>getrf()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZgetrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real single and double precision, respectively.

cusolverStatus_t
cusolverDnSgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *Workspace,
 int *devIpiv,
 int *devInfo);

cusolverStatus_t
cusolverDnDgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 double *Workspace,
 int *devIpiv,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 30

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *Workspace,
 int *devIpiv,
 int *devInfo);

cusolverStatus_t
cusolverDnZgetrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *Workspace,
 int *devIpiv,
 int *devInfo);

This function computes the LU factorization of a m×n matrix

where A is a m×n matrix, P is a permutation matrix, L is a lower triangular matrix with
unit diagonal, and U is an upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
getrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter devInfo=i
indicates U(i,i) = 0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

If devIpiv is null, no pivoting is performed. The factorization is A=L*U, which is not
numerically stable.

No matter LU factorization failed or not, the output parameter devIpiv contains
pivoting sequence, row i is interchanged with row devIpiv(i).

The user can combine getrf and getrs to complete a linear solver. Please refer to
appendix D.1.
API of getrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 31

lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

devIpiv device output array of size at least min(m,n),
containing pivot indices.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devInfo = -i, the i-th
parameter is wrong. if devInfo = i, the
U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 32

5.2.4. cusolverDn<t>getrs()

cusolverStatus_t
cusolverDnSgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const float *A,
 int lda,
 const int *devIpiv,
 float *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnDgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const double *A,
 int lda,
 const int *devIpiv,
 double *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnCgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuComplex *A,
 int lda,
 const int *devIpiv,
 cuComplex *B,
 int ldb,
 int *devInfo);

cusolverStatus_t
cusolverDnZgetrs(cusolverDnHandle_t handle,
 cublasOperation_t trans,
 int n,
 int nrhs,
 const cuDoubleComplex *A,
 int lda,
 const int *devIpiv,
 cuDoubleComplex *B,
 int ldb,
 int *devInfo);

This function solves a linear system of multiple right-hand sides

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 33

where A is a n×n matrix, and was LU-factored by getrf, that is, lower trianular part of
A is L, and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs
right-hand side matrix.

The input parameter trans is defined by

The input parameter devIpiv is an output of getrf. It contains pivot indices, which are
used to permutate right-hand sides.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

The user can combine getrf and getrs to complete a linear solver. Please refer to
appendix D.1.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

trans host input operation op(A) that is non- or (conj.)
transpose.

n host input number of rows and columns of matrix A.

nrhs host input number of right-hand sides.

A device input <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

devIpiv device input array of size at least n, containing pivot
indices.

B device output <type> array of dimension ldb * nrhs
with ldb is not less than max(1,n).

ldb host input leading dimension of two-dimensional
array used to store matrix B.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 34

5.2.5. cusolverDn<t>geqrf()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZgeqrf_bufferSize(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *TAU,
 float *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 double *TAU,
 double *Workspace,
 int Lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 35

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *TAU,
 cuComplex *Workspace,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgeqrf(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *TAU,
 cuDoubleComplex *Workspace,
 int Lwork,
 int *devInfo);

This function computes the QR factorization of a m×n matrix

where A is a m×n matrix, Q is a m×n matrix, and R is a n×n upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
geqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are
stored in lower triangular part of A. The leading nonzero element of householder vector
is assumed to be 1 such that output parameter TAU contains the scaling factor τ. If v
is original householder vector, q is the new householder vector corresponding to τ,
satisying the following relation

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of geqrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 36

lda host input leading dimension of two-dimensional
array used to store matrix A.

TAU device output <type> array of dimension at least
min(m,n).

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of working array Workspace.

devInfo device output if info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 37

5.2.6. cusolverDn<t>ormqr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSormqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnDormqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnCunmqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnZunmqr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *C,
 int ldc,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 38

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormqr(cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *tau,
 float *C,
 int ldc,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDormqr(cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 double *C,
 int ldc,
 double *work,
 int lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 39

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmqr(cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *C,
 int ldc,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZunmqr(cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasOperation_t trans,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *C,
 int ldc,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function overwrites m×n matrix C by

The operation of Q is defined by

Q is a unitary matrix formed by a sequence of elementary reflection vectors from QR
factorization (geqrf) of A.

Q=H(1) H(2) ... H(k)

Q is of order m if side = CUBLAS_SIDE_LEFT and of order n if side =
CUBLAS_SIDE_RIGHT.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
geqrf_bufferSize() or ormqr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 40

The user can combine geqrf, ormqr and trsm to complete a linear solver or a least-
square solver. Please refer to appendix C.1.
API of ormqr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

side host input indicates if matrix Q is on the left or right
of C.

trans host input operation op(Q) that is non- or (conj.)
transpose.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

k host input number of elementary relfections.

A device in/out <type> array of dimension lda * k
with lda is not less than max(1,m). The
matrix A is from geqrf, so i-th column
contains elementary reflection vector.

lda host input leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension at least
min(m,n). The vector tau is from geqrf,
so tau(i) is the scalar of i-th elementary
reflection vector.

C device in/out <type> array of size ldc * n. On exit, C
is overwritten by op(Q)*C.

ldc host input leading dimension of two-dimensional
array of matrix C. ldc >= max(1,m).

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the ormqr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 41

5.2.7. cusolverDn<t>orgqr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const float *A,
 int lda,
 int *lwork);

cusolverStatus_t
cusolverDnDorgqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 int *lwork);

cusolverStatus_t
cusolverDnCungqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 int *lwork);

cusolverStatus_t
cusolverDnZungqr_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 42

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDorgqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungqr(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int k,
 cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function overwrites m×n matrix A by

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 43

where Q is a unitary matrix formed by a sequence of elementary reflection vectors stored
in A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgqr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

The user can combine geqrf, orgqr to complete orthogonalization. Please refer to
appendix C.2.
API of ormqr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix Q. m >= 0;

n host input number of columns of matrix Q. m >= n >=
0;

k host input number of elementary relfections whose
product defines the matrix Q. n >= k >= 0;

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,m).
i-th column of A contains elementary
reflection vector.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m).

tau device output <type> array of dimension k. tau(i) is
the scalar of i-th elementary reflection
vector.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the orgqr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,k<0, n>m,
k>n or lda<m).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 44

5.2.8. cusolverDn<t>sytrf()
These helper functions calculate the size of the needed buffers.

cusolverStatus_t
cusolverDnSsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 float *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnDsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 double *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnCsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 cuComplex *A,
 int lda,
 int *Lwork);

cusolverStatus_t
cusolverDnZsytrf_bufferSize(cusolverDnHandle_t handle,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 int *ipiv,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 int *ipiv,
 double *work,
 int lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 45

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 int *ipiv,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZsytrf(cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 int *ipiv,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes the Bunch-Kaufman factorization of a n×n symmetric indefinite
matrix

A is a n×n symmetric matrix, only lower or upper part is meaningful. The input
parameter uplo which part of the matrix is used. The function would leave other part
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of
A is processed, and replaced by lower triangular factor L and block diagonal matrix D.
Each block of D is either 1x1 or 2x2 block, depending on pivoting.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular factor U and block diagonal matrix D.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sytrf_bufferSize().

If Bunch-Kaufman factorization failed, i.e. A is singular. The output parameter devInfo
= i would indicate D(i,i)=0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

The output parameter devIpiv contains pivoting sequence. If devIpiv(i) = k > 0,
D(i,i) is 1x1 block, and i-th row/column of A is interchanged with k-th row/column
of A. If uplo is CUSBLAS_FILL_MODE_UPPER and devIpiv(i-1) = devIpiv(i) =
-m < 0, D(i-1:i,i-1:i) is a 2x2 block, and (i-1)-th row/column is interchanged
with m-th row/column. If uplo is CUSBLAS_FILL_MODE_LOWER and devIpiv(i+1) =

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 46

devIpiv(i) = -m < 0, D(i:i+1,i:i+1) is a 2x2 block, and (i+1)-th row/column is
interchanged with m-th row/column.
API of sytrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

ipiv device output array of size at least n, containing pivot
indices.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working space work.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devInfo = -i, the i-th
parameter is wrong. if devInfo = i, the
D(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

5.3. Dense Eigenvalue Solver Reference
This chapter describes eigenvalue solver API of cuSolverDN, including
bidiagonalization and SVD.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 47

5.3.1. cusolverDn<t>gebrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cusolverStatus_t
cusolverDnDgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cusolverStatus_t
cusolverDnCgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cusolverStatus_t
cusolverDnZgebrd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *Lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 48

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 float *A,
 int lda,
 float *D,
 float *E,
 float *TAUQ,
 float *TAUP,
 float *Work,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 double *A,
 int lda,
 double *D,
 double *E,
 double *TAUQ,
 double *TAUP,
 double *Work,
 int Lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *D,
 float *E,
 cuComplex *TAUQ,
 cuComplex *TAUP,
 cuComplex *Work,
 int Lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgebrd(cusolverDnHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *D,
 double *E,
 cuDoubleComplex *TAUQ,
 cuDoubleComplex *TAUP,
 cuDoubleComplex *Work,
 int Lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 49

This function reduces a general m×n matrix A to a real upper or lower bidiagonal form B
by an orthogonal transformation:

If m>=n, B is upper bidiagonal; if m<n, B is lower bidiagonal.

The matrix Q and P are overwritten into matrix A in the following sense:

if m>=n, the diagonal and the first superdiagonal are overwritten with the upper
bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above the
first superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.

if m<n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal
matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above
the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of
elementary reflectors.

The user has to provide working space which is pointed by input parameter Work.
The input parameter Lwork is size of the working space, and it is returned by
gebrd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.

Remark: gebrd only supports m>=n.
API of gebrd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

D device output real array of dimension min(m,n). The
diagonal elements of the bidiagonal
matrix B: D(i) = A(i,i).

E device output real array of dimension min(m,n). The
off-diagonal elements of the bidiagonal
matrix B: if m>=n, E(i) = A(i,i+1) for
i = 1,2,...,n-1; if m<n, E(i) = A(i
+1,i) for i = 1,2,...,m-1.

TAUQ device output <type> array of dimension min(m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Q.

TAUP device output <type> array of dimension min(m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix P.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 50

Work device in/out working space, <type> array of size
Lwork.

Lwork host input size of Work, returned by
gebrd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0, or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 51

5.3.2. cusolverDn<t>orgbr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const float *A,
 int lda,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDorgbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const double *A,
 int lda,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnCungbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZungbr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 52

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDorgbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 53

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungbr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 int m,
 int n,
 int k,
 cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function generates one of the unitary matrices Q or P**H determined by gebrd
when reducing a matrix A to bidiagonal form:

Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgbr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of orgbr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

side host input if side = CUBLAS_SIDE_LEFT, generate
Q. if side = CUBLAS_SIDE_RIGHT,
generate P**T.

m host input number of rows of matrix Q or P**T.

n host input if side = CUBLAS_SIDE_LEFT,
m>= n>= min(m,k). if side =
CUBLAS_SIDE_RIGHT, n>= m>= min(n,k).

k host input if side = CUBLAS_SIDE_LEFT, the
number of columns in the original m-
by-k matrix reduced by gebrd. if side
= CUBLAS_SIDE_RIGHT, the number of

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 54

rows in the original k-by-n matrix reduced
by gebrd.

A device in/out <type> array of dimension lda * n
On entry, the vectors which define the
elementary reflectors, as returned by
gebrd. On exit, the m-by-n matrix Q or
P**T.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m);

tau device output <type> array of dimension min(m,k)
if side is CUBLAS_SIDE_LEFT;
of dimension min(n,k) if side is
CUBLAS_SIDE_RIGHT; tau(i) must contain
the scalar factor of the elementary
reflector H(i) or G(i), which determines Q
or P**T, as returned by gebrd in its array
argument TAUQ or TAUP.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the ormqr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 55

5.3.3. cusolverDn<t>sytrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSsytrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *d,
 const float *e,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDsytrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *d,
 const double *e,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnChetrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *d,
 const float *e,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZhetrd_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *d,
 const double *e,
 const cuDoubleComplex *tau,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 56

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsytrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *d,
 float *e,
 float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsytrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *d,
 double *e,
 double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChetrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *d,
 float *e,
 cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t CUDENSEAPI cusolverDnZhetrd(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *d,
 double *e,
 cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 57

This function reduces a general symmetric (Hermitian) n×n matrix A to real symmetric
tridiagonal form T by an orthogonal transformation:

As an output, A contains T and householder reflection vectors. If uplo =
CUBLAS_FILL_MODE_UPPER, the diagonal and first superdiagonal of A are overwritten
by the corresponding elements of the tridiagonal matrix T, and the elements above the
first superdiagonal, with the array tau, represent the orthogonal matrix Q as a product
of elementary reflectors; If uplo = CUBLAS_FILL_MODE_LOWER, the diagonal and first
subdiagonal of A are overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with the array tau, represent the
orthogonal matrix Q as a product of elementary reflectors.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sytrd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of sytrd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n). If
uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular part
of A contains the upper triangular part
of the matrix A, and the strictly lower
triangular part of A is not referenced. If
uplo = CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part of A
contains the lower triangular part of the
matrix A, and the strictly upper triangular
part of A is not referenced. On exit,
A is overwritten by T and householder
reflection vectors.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

D device output real array of dimension n. The diagonal
elements of the tridiagonal matrix T:
D(i) = A(i,i).

E device output real array of dimension (n-1).
The off-diagonal elements of
the tridiagonal matrix T: if uplo
= CUBLAS_FILL_MODE_UPPER,
E(i) = A(i,i+1). if uplo =

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 58

CUBLAS_FILL_MODE_LOWER E(i) = A(i
+1,i).

tau device output <type> array of dimension (n-1). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Q.

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
sytrd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed
(n<0, or lda<max(1,n), or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 59

5.3.4. cusolverDn<t>ormtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSormtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const float *A,
 int lda,
 const float *tau,
 const float *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnDormtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const double *A,
 int lda,
 const double *tau,
 const double *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnCunmtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 const cuComplex *C,
 int ldc,
 int *lwork);

cusolverStatus_t
cusolverDnZunmtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 const cuDoubleComplex *C,
 int ldc,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 60

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSormtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 float *A,
 int lda,
 float *tau,
 float *C,
 int ldc,
 float *work,
 int lwork,
 int *info);

cusolverStatus_t
cusolverDnDormtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 double *A,
 int lda,
 double *tau,
 double *C,
 int ldc,
 double *work,
 int lwork,
 int *info);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 61

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCunmtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *tau,
 cuComplex *C,
 int ldc,
 cuComplex *work,
 int lwork,
 int *info);

cusolverStatus_t
cusolverDnZunmtr(
 cusolverDnHandle_t handle,
 cublasSideMode_t side,
 cublasFillMode_t uplo,
 cublasOperation_t trans,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *tau,
 cuDoubleComplex *C,
 int ldc,
 cuDoubleComplex *work,
 int lwork,
 int *info);

This function overwrites m×n matrix C by

where Q is a unitary matrix formed by a sequence of elementary reflection vectors from
sytrd.

The operation on Q is defined by

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
ormtr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of ormtr

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 62

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

side host input side = CUBLAS_SIDE_LEFT, apply
Q or Q**T from the Left; side =
CUBLAS_SIDE_RIGHT, apply Q or Q**T
from the Right.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

trans host input operation op(Q) that is non- or (conj.)
transpose.

m host input number of rows of matrix C.

n host input number of columns of matrix C.

A device in/out <type> array of dimension lda * m if
side = CUBLAS_SIDE_LEFT; lda * n if
side = CUBLAS_SIDE_RIGHT. The matrix
A from sytrd contains the elementary
reflectors.

lda host input leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension (m-1) if side
is CUBLAS_SIDE_LEFT; of dimension
(n-1) if side is CUBLAS_SIDE_RIGHT;
The vector tau is from sytrd, so tau(i)
is the scalar of i-th elementary reflection
vector.

C device in/out <type> array of size ldc * n. On exit, C
is overwritten by op(Q)*C or C*op(Q).

ldc host input leading dimension of two-dimensional
array of matrix C. ldc >= max(1,m).

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the ormqr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 63

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

5.3.5. cusolverDn<t>orgtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t
cusolverDnSorgtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *tau,
 int *lwork);

cusolverStatus_t
cusolverDnDorgtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *tau,
 int *lwork);

cusolverStatus_t
cusolverDnCungtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *tau,
 int *lwork);

cusolverStatus_t
cusolverDnZungtr_bufferSize(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 64

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSorgtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 const float *tau,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDorgtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 const double *tau,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCungtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 const cuComplex *tau,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZungtr(
 cusolverDnHandle_t handle,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *tau,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function generates a unitary matrix Q which is defined as the product of n-1
elementary reflectors of order n, as returned by sytrd:

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgtr_bufferSize().

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 65

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
API of orgtr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

n host input number of rows (columns) of matrix Q.

A device in/out <type> array of dimension lda * n On
entry, matrix A from sytrd contains the
elementary reflectors. On exit, matrix A
contains the n-by-n orthogonal matrix Q.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

tau device output <type> array of dimension (n-1) tau(i)
is the scalar of i-th elementary reflection
vector.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the orgtr is successful.
if info = -i, the i-th parameter is
wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or wrong lda
).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 66

5.3.6. cusolverDn<t>gesvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnDgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnCgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cusolverStatus_t
cusolverDnZgesvd_bufferSize(
 cusolverDnHandle_t handle,
 int m,
 int n,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 67

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *VT,
 int ldvt,
 float *work,
 int lwork,
 float *rwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 double *A,
 int lda,
 double *S,
 double *U,
 int ldu,
 double *VT,
 int ldvt,
 double *work,
 int lwork,
 double *rwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 68

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *VT,
 int ldvt,
 cuComplex *work,
 int lwork,
 float *rwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZgesvd (
 cusolverDnHandle_t handle,
 signed char jobu,
 signed char jobvt,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *VT,
 int ldvt,
 cuDoubleComplex *work,
 int lwork,
 double *rwork,
 int *devInfo);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is
an m×m unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are
the singular values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
gesvd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong.
if bdsqr did not converge, devInfo specifies how many superdiagonals of an
intermediate bidiagonal form did not converge to zero.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 69

The rwork is real array of dimension (min(m,n)-1). If devInfo>0 and rwork is not
nil, rwork contains the unconverged superdiagonal elements of an upper bidiagonal
matrix. This is slightly different from LAPACK which puts unconverged superdiagonal
elements in work if type is real; in rwork if type is complex. rwork can be a NULL
pointer if the user does not want the information from supperdiagonal.

Appendix F.1 provides a simple example of gesvd.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns , not V.
API of gesvd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobu host input specifies options for computing all or part
of the matrix U: = 'A': all m columns of
U are returned in array U: = 'S': the first
min(m,n) columns of U (the left singular
vectors) are returned in the array U; =
'O': the first min(m,n) columns of U (the
left singular vectors) are overwritten on
the array A; = 'N': no columns of U (no left
singular vectors) are computed.

jobvt host input specifies options for computing all or
part of the matrix V**T: = 'A': all N rows
of V**T are returned in the array VT; =
'S': the first min(m,n) rows of V**T (the
right singular vectors) are returned in the
array VT; = 'O': the first min(m,n) rows
of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

S device output real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m with
ldu is not less than max(1,m). U contains
the m×m unitary matrix U.

ldu host input leading dimension of two-dimensional
array used to store matrix U.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 70

VT device output <type> array of dimension ldvt * n
with ldvt is not less than max(1,n). VT
contains the n×n unitary matrix V**T.

ldvt host input leading dimension of two-dimensional
array used to store matrix Vt.

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
gesvd_bufferSize.

rwork device input real array of dimension min(m,n)-1. It
contains the unconverged superdiagonal
elements of an upper bidiagonal matrix if
devInfo > 0.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-
th parameter is wrong. if devInfo
> 0, devInfo indicates how many
superdiagonals of an intermediate
bidiagonal form did not converge to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldvt<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 71

5.3.7. cusolverDn<t>gesvdj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const float *A,
 int lda,
 const float *S,
 const float *U,
 int ldu,
 const float *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const double *A,
 int lda,
 const double *S,
 const double *U,
 int ldu,
 const double *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnCgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 const float *S,
 const cuComplex *U,
 int ldu,
 const cuComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *S,
 const cuDoubleComplex *U,
 int ldu,
 const cuDoubleComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 72

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *V,
 int ldv,
 float *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 double *A,
 int lda,
 double *S,
 double *U,
 int ldu,
 double *V,
 int ldv,
 double *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 73

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *V,
 int ldv,
 cuComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int econ,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *V,
 int ldv,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is
an m×m unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are
the singular values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

gesvdj has the same functionality as gesvd. The difference is that gesvd uses QR
algorithm and gesvdj uses Jacobi method. The parallelism of Jacobi method gives GPU
better performance on small and medium size matrices. Moreover the user can configure
gesvdj to perform approximation up to certain accuracy.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 74

gesvdj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where S is diagonal and diagonal of E is zero.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down
to zero, S is the set of singular values. In practice, Jacobi method stops if

where eps is given tolerance.

gesvdj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXgesvdjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXgesvdjSetMaxSweeps
to set a proper bound. The experimentis show 15 sweeps are good enough to converge
to machine accuracy. gesvdj stops either tolerance is met or maximum number of
sweeps is met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number
of sweeps. To guarantee certain accuracy, the user should configure tolerance only.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
gesvdj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong. If info =
min(m,n)+1, gesvdj does not converge under given tolerance and maximum sweeps.

If the user sets an improper tolerance, gesvdj may not converge. For example, tolerance
should not be smaller than machine accuracy.

Appendix F.2 provides a simple example of gesvdj.

Remark 1: gesvdj supports any combination of m and n.

Remark 2: the routine returns V, not . This is different from gesvd.
API of gesvdj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

econ host input econ = 1 for economy size for U and V.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 75

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

S device output real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m if
econ is zero. If econ is nonzero, the
dimension is ldu * min(m,n). U contains
the left singular vectors.

ldu host input leading dimension of two-dimensional
array used to store matrix U. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n if
econ is zero. If econ is nonzero, the
dimension is ldv * min(m,n). V contains
the right singular vectors.

ldv host input leading dimension of two-dimensional
array used to store matrix V. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input size of work, returned by
gesvdj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong. if info = min(m,n)+1, gesvdj
dose not converge under given tolerance
and maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm and results of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)
or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 76

5.3.8. cusolverDn<t>gesvdjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const float *A,
 int lda,
 const float *S,
 const float *U,
 int ldu,
 const float *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const double *A,
 int lda,
 const double *S,
 const double *U,
 int ldu,
 const double *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnCgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const cuComplex *A,
 int lda,
 const float *S,
 const cuComplex *U,
 int ldu,
 const cuComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *S,
 const cuDoubleComplex *U,
 int ldu,
 const cuDoubleComplex *V,
 int ldv,
 int *lwork,
 gesvdjInfo_t params,
 int batchSize);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 77

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 float *A,
 int lda,
 float *S,
 float *U,
 int ldu,
 float *V,
 int ldv,
 float *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 double *A,
 int lda,
 double *S,
 double *U,
 int ldu,
 double *V,
 int ldv,
 double *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 78

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 cuComplex *A,
 int lda,
 float *S,
 cuComplex *U,
 int ldu,
 cuComplex *V,
 int ldv,
 cuComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 int m,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *S,
 cuDoubleComplex *U,
 int ldu,
 cuDoubleComplex *V,
 int ldv,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 gesvdjInfo_t params,
 int batchSize);

This function computes singular values and singular vectors of a squence of general m×n
matrices

where is a real m×n diagonal matrix which is zero except for its min(m,n) diagonal
elements. (left singular vectors) is a m×m unitary matrix and (right singular vectors)
is a n×n unitary matrix. The diagonal elements of are the singular values of in either
descending order or non-sorting order.

gesvdjBatched performs gesvdj on each matrix. It requires that all matrices are of the
same size m,n no greater than 32 and are packed in contiguous way,

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 79

Each matrix is column-major with leading dimension lda, so the formula for random
access is .

The parameter S also contains singular values of each matrix in contiguous way,

The formula for random access of S is .

Except for tolerance and maximum sweeps, gesvdjBatched can either sort the singular
values in descending order (default) or chose as-is (without sorting) by the function
cusolverDnXgesvdjSetSortEig. If the user packs several tiny matrices into diagonal
blocks of one matrix, non-sorting option can separate singular values of those tiny
matrices.

gesvdjBatched cannot report residual and executed sweeps by function
cusolverDnXgesvdjGetResidual and cusolverDnXgesvdjGetSweeps. Any call of
the above two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute
residual explicitly.

The user has to provide working space pointed by input parameter work. The
input parameter lwork is the size of the working space, and it is returned by
gesvdjBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function
returns CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less
than zero) indicates i-th parameter is wrong. Otherwise, if info[i] = min(m,n)+1,
gesvdjBatched does not converge on i-th matrix under given tolerance and
maximum sweeps.

Appendix F.3 provides a simple example of gesvdjBatched.
API of syevjBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

m host input number of rows of matrix Aj. m is no
greater than 32.

n host input number of columns of matrix Aj. n is no
greater than 32.

A device in/out <type> array of dimension lda * n *
batchSize with lda is not less than
max(1,n). on Exit: the contents of Aj are
destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix Aj.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 80

S device output a real array of dimension
min(m,n)*batchSize. It stores the
singular values of Aj in descending order
or non-sorting order.

U device output <type> array of dimension ldu * m *
batchSize. Uj contains the left singular
vectors of Aj.

ldu host input leading dimension of two-dimensional
array used to store matrix Uj. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n *
batchSize. Vj contains the right singular
vectors of Aj.

ldv host input leading dimension of two-dimensional
array used to store matrix Vj. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input size of work, returned by
gesvdjBatched_bufferSize.

info device output an integer array of dimension batchSize.
If CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is
wrong. Otherwise, if info[i] = 0, the
operation is successful. if info[i] =
min(m,n)+1, gesvdjBatched dose not
converge on i-th matrix under given
tolerance and maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm.

batchSize host input number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)
or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR , or batchSize<0
).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 81

5.3.9. cusolverDn<t>syevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsyevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnCheevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZheevd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *W,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 82

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsyevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZheevd(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix A. The standard symmetric eigenvalue problem is

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 83

where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements
of Λ are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
syevd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong. If
devInfo = i (greater than zero), i off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors
of the matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Appendix E.1 provides a simple example of syevd.
API of syevd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending order
ie, sorted so that W(i) <= W(i+1).

work device in/out working space, <type> array of size
lwork.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 84

Lwork host input size of work, returned by
syevd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong. if devInfo = i (>
0), devInfo indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 85

5.3.10. cusolverDn<t>sygvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *B,
 int ldb,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnDsygvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *B,
 int ldb,
 const double *W,
 int *lwork);

cusolverStatus_t
cusolverDnChegvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *B,
 int ldb,
 const float *W,
 int *lwork);

cusolverStatus_t
cusolverDnZhegvd_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *B,
 int ldb,
 const double *W,
 int *lwork);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 86

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *B,
 int ldb,
 float *W,
 float *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnDsygvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *B,
 int ldb,
 double *W,
 double *work,
 int lwork,
 int *devInfo);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 87

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 float *W,
 cuComplex *work,
 int lwork,
 int *devInfo);

cusolverStatus_t
cusolverDnZhegvd(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix-pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal
elements of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal
matrix. The eigenvectors are normalized as follows:

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sygvd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong. If
devInfo = i (i > 0 and i<=n) and jobz = CUSOLVER_EIG_MODE_NOVECTOR, i
off-diagonal elements of an intermediate tridiagonal form did not converge to zero. If
devInfo = N + i (i > 0), then the leading minor of order i of B is not positive definite.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 88

The factorization of B could not be completed and no eigenvalues or eigenvectors were
computed.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of
the matrix A. The eigenvectors are computed by divide and conquer algorithm.

Appendix E.2 provides a simple example of sygvd.
API of sygvd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

itype host input Specifies the problem type to be
solved: itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A and B are stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A and B are stored.

n host input number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 89

n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if devInfo is less than n, B
is overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output a real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out working space, <type> array of size
lwork.

Lwork host input size of work, returned by
sygvd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong. if devInfo = i (>
0), devInfo indicates either potrf or
syevd is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0, or
lda<max(1,n), or ldb<max(1,n), or itype
is not 1, 2 or 3, or jobz is not 'N' or 'V', or
uplo is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 90

5.3.11. cusolverDn<t>syevj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsyevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnCheevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 91

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsyevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZheevj(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix A. The standard symmetric eigenvalue problem is

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 92

where Λ is a real n×n diagonal matrix. Q is an n×n unitary matrix. The diagonal elements
of Λ are the eigenvalues of A in ascending order.

syevj has the same functionality as syevd. The difference is that syevd uses QR
algorithm and syevj uses Jacobi method. The parallelism of Jacobi method gives GPU
better performance on small and medium size matrices. Moreover the user can configure
syevj to perform approximation up to certain accuracy.

How does it work?

syevj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where W is diagonal and E is symmetric without diagonal.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down
to zero, W is the set of eigenvalues. In practice, Jacobi method stops if

where eps is given tolerance.

syevj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXsyevjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXsyevjSetMaxSweeps to
set a proper bound. The experimentis show 15 sweeps are good enough to converge to
machine accuracy. syevj stops either tolerance is met or maximum number of sweeps is
met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number
of sweeps. To guarantee certain accuracy, the user should configure tolerance only.

After syevj, the user can query residual by function cusolverDnXsyevjGetResidual
and number of executed sweeps by function cusolverDnXsyevjGetSweeps. However
the user needs to be aware that residual is the Frobenius norm of E, not accuracy of
individual eigenvalue, i.e.

The same as syevd, the user has to provide working space pointed by input parameter
work. The input parameter lwork is the size of the working space, and it is returned by
syevj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong. If info =
n+1, syevj does not converge under given tolerance and maximum sweeps.

If the user sets an improper tolerance, syevj may not converge. For example, tolerance
should not be smaller than machine accuracy.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 93

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors V.

Appendix E.3 provides a simple example of syevj.
API of syevj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending order
ie, sorted so that W(i) <= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
syevj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong. if info = n+1, syevj dose not
converge under given tolerance and
maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm and results of syevj.

Status Returned

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 94

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 95

5.3.12. cusolverDn<t>sygvj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *B,
 int ldb,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *B,
 int ldb,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnChegvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const cuComplex *B,
 int ldb,
 const float *W,
 int *lwork,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const cuDoubleComplex *B,
 int ldb,
 const double *W,
 int *lwork,
 syevjInfo_t params);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 96

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *B,
 int ldb,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *B,
 int ldb,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 97

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 cuComplex *B,
 int ldb,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

cusolverStatus_t
cusolverDnZhegvj(
 cusolverDnHandle_t handle,
 cusolverEigType_t itype,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 cuDoubleComplex *B,
 int ldb,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix-pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal
elements of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal
matrix. The eigenvectors are normalized as follows:

This function has the same functionality as sygvd except that syevd in sygvd is
replaced by syevj in sygvj. Therefore, sygvj inherits properties of syevj, the user
can use cusolverDnXsyevjSetTolerance and cusolverDnXsyevjSetMaxSweeps to
configure tolerance and maximum sweeps.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 98

However the meaning of residual is different from syevj. sygvj first computes
Cholesky factorization of matrix B,

transform the problem to standard eigenvalue problem, then calls syevj.

For example, the standard eigenvalue problem of type I is

where matrix M is symmtric

The residual is the result of syevj on matrix M, not A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
sygvj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong. If info =
i (i > 0 and i<=n), B is not positive definite, the factorization of B could not be completed
and no eigenvalues or eigenvectors were computed. If info = n+1, syevj does not
converge under given tolerance and maximum sweeps. In this case, the eigenvalues
and eigenvectors are still computed because non-convergence comes from improper
tolerance of maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors V.

Appendix E.4 provides a simple example of sygvj.
API of sygvj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

itype host input Specifies the problem type to be
solved: itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A and B are stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A and B are stored.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 99

n host input number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if info is less than n, B is
overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output a real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
sygvj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter
is wrong. if info = i (> 0), info
indicates either B is not positive definite
or syevj (called by sygvj) does not
converge.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 100

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or ldb<max(1,n),
or itype is not 1, 2 or 3, or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 101

5.3.13. cusolverDn<t>syevjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const float *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const double *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnCheevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuComplex *A,
 int lda,
 const float *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnZheevjBatched_bufferSize(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 const cuDoubleComplex *A,
 int lda,
 const double *W,
 int *lwork,
 syevjInfo_t params,
 int batchSize
);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 102

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 float *A,
 int lda,
 float *W,
 float *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnDsyevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 double *A,
 int lda,
 double *W,
 double *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 103

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuComplex *A,
 int lda,
 float *W,
 cuComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

cusolverStatus_t
cusolverDnZheevjBatched(
 cusolverDnHandle_t handle,
 cusolverEigMode_t jobz,
 cublasFillMode_t uplo,
 int n,
 cuDoubleComplex *A,
 int lda,
 double *W,
 cuDoubleComplex *work,
 int lwork,
 int *info,
 syevjInfo_t params,
 int batchSize
);

This function computes eigenvalues and eigenvectors of a squence of symmetric
(Hermitian) n×n matrices

where is a real n×n diagonal matrix. is an n×n unitary matrix. The diagonal
elements of are the eigenvalues of in either ascending order or non-sorting order.

syevjBatched performs syevj on each matrix. It requires that all matrices are of the
same size n no greater than 32 and are packed in contiguous way,

Each matrix is column-major with leading dimension lda, so the formula for random
access is .

The parameter W also contains eigenvalues of each matrix in contiguous way,

The formula for random access of W is .

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 104

Except for tolerance and maximum sweeps, syevjBatched can either sort the
eigenvalues in ascending order (default) or chose as-is (without sorting) by the function
cusolverDnXsyevjSetSortEig. If the user packs several tiny matrices into diagonal
blocks of one matrix, non-sorting option can separate spectrum of those tiny matrices.

syevjBatched cannot report residual and executed sweeps by function
cusolverDnXsyevjGetResidual and cusolverDnXsyevjGetSweeps. Any call of the
above two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute
residual explicitly.

The user has to provide working space pointed by input parameter work. The
input parameter lwork is the size of the working space, and it is returned by
syevjBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong. Otherwise, if info[i] = n+1, syevjBatched does
not converge on i-th matrix under given tolerance and maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR, contains the orthonormal eigenvectors
 .

Appendix E.5 provides a simple example of syevjBatched.
API of syevjBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of Aj is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of Aj is stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of Aj is stored.

n host input number of rows (or columns) of matrix
each Aj. n is no greater than 32.

A device in/out <type> array of dimension lda
* n * batchSize with lda is
not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of Aj contains the upper triangular
part of the matrix Aj. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of Aj
contains the lower triangular part
of the matrix Aj. On exit, if jobz =
CUSOLVER_EIG_MODE_VECTOR, and
info[j] = 0, Aj contains the orthonormal
eigenvectors of the matrix Aj. If jobz

cuSolverDN: dense LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 105

= CUSOLVER_EIG_MODE_NOVECTOR, the
contents of Aj are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix Aj.

W device output a real array of dimension n*batchSize.
It stores the eigenvalues of Aj in
ascending order or non-sorting order.

work device in/out <type> array of size lwork, workspace.

lwork host input size of work, returned by
syevjBatched_bufferSize.

info device output an integer array of dimension batchSize.
If CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is
wrong. Otherwise, if info[i] = 0, the
operation is successful. if info[i] = n
+1, syevjBatched dose not converge on
i-th matrix under given tolerance and
maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm.

batchSize host input number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
n>32 or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER), or batchSize<0.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 106

Chapter 6.
CUSOLVERSP: SPARSE LAPACK FUNCTION
REFERENCE

This chapter describes the API of cuSolverSP, which provides a subset of LAPACK
funtions for sparse matrices in CSR or CSC format.

6.1. Helper Function Reference

6.1.1. cusolverSpCreate()

cusolverStatus_t
cusolverSpCreate(cusolverSpHandle_t *handle)

This function initializes the cuSolverSP library and creates a handle on the cuSolver
context. It must be called before any other cuSolverSP API function is invoked. It
allocates hardware resources necessary for accessing the GPU.
Output

handle the pointer to the handle to the cuSolverSP
context.

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

6.1.2. cusolverSpDestroy()
cusolverStatus_t
cusolverSpDestroy(cusolverSpHandle_t handle)

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 107

This function releases CPU-side resources used by the cuSolverSP library.
Input

handle the handle to the cuSolverSP context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

6.1.3. cusolverSpSetStream()

cusolverStatus_t
cusolverSpSetStream(cusolverSpHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverSP library to execute its routines.
Input

handle the handle to the cuSolverSP context.

streamId the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

6.1.4. cusolverSpXcsrissym()

cusolverStatus_t
cusolverSpXcsrissymHost(cusolverSpHandle_t handle,
 int m,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrEndPtrA,
 const int *csrColIndA,
 int *issym);

This function checks if A has symmetric pattern or not. The output parameter issym
reports 1 if A is symmetric; otherwise, it reports 0.

The matrix A is an m×m sparse matrix that is defined in CSR storage format by the four
arrays csrValA, csrRowPtrA, csrEndPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.

The csrlsvlu and csrlsvqr do not accept non-general matrix. the user has to extend
the matrix into its missing upper/lower part, otherwise the result is not expected. The
user can use csrissym to check if the matrix has symmetric pattern or not.

Remark 1: only CPU path is provided.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 108

Remark 2: the user has to check returned status to get valid information. The function
converts A to CSC format and compare CSR and CSC format. If the CSC failed because
of insufficient resources, issym is undefined, and this state can only be detected by the
return status code.
Input

parameter MemorySpace description

handle host handle to the cuSolverSP library context.

m host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of m elements that contains the start
of every row.

csrEndPtrA host integer array of m elements that contains the end
of the last row plus one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter MemorySpace description

issym host 1 if A is symmetric; 0 otherwise.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.2. High Level Function Reference
This section describes high level API of cuSolverSP, including linear solver, least-square
solver and eigenvalue solver. The high-level API is designed for ease-of-use, so it
allocates any required memory under the hood automatically. If the host or GPU system
memory is not enough, an error is returned.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 109

6.2.1. cusolverSp<t>csrlsvlu()

cusolverStatus_t
cusolverSpScsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvlu[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 110

This function solves the linear system

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size n, and x
is the solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse LU with partial pivoting,

cusolver library provides two reordering schemes, symrcm and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.

If reorder is nonzero, csrlsvlu does

where .

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of U is
zero, i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The index is base-0, independent of base index of A. For example, if
2nd column of A is the same as first column, then A is singular and singularity = 1
which means U(1,1)≈0.

Remark 1: csrlsvlu performs traditional LU with partial pivoting, the pivot of k-th
column is determined dynamically based on the k-th column of intermediate matrix.
csrlsvlu follows Gilbert and Peierls's algorithm [4] which uses depth-first-search and
topological ordering to solve triangular system (Davis also describes this algorithm in
detail in his book [1]). Before performing LU factorization, csrlsvlu over-estimates size
of L and U, and allocates a buffer to contain factors L and U. George and Ng [5] proves
that sparsity pattern of cholesky factor of is a superset of sparsity pattern of L and
U. Furthermore, they propose an algorithm to find sparisty pattern of QR factorization
which is a superset of LU [6]. csrlsvlu uses QR factorization to estimate size of LU in
the analysis phase. The cost of analysis phase is mainly on figuring out sparsity pattern
of householder vectors in QR factorization. The idea to avoid computing in [7]
is adopted. If system memory is insufficient to keep sparsity pattern of QR, csrlsvlu
returns CUSOLVER_STATUS_ALLOC_FAILED. If the matrix is not banded, it is better to
enable reordering to avoid CUSOLVER_STATUS_ALLOC_FAILED.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 111

Remark 2: approximate minimum degree ordering (symamd) is a well-known technique
to reduce zero fill-in of QR factorization. However in most cases, symrcm still performs
well.

Remark 3: only CPU (Host) path is provided.

Remark 4: multithreaded csrlsvlu is not avaiable yet. If QR does not incur much zero
fill-in, csrlsvqr would be faster than csrlsvlu.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA csrRowPtrA(n)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of n elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzA csrRowPtrA(n)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size n.

tol host host tolerance to decide if singular or not.

reorder host host no ordering if reorder=0. Otherwise,
symrcm is used to reduce zero fill-in.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size n, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index
j such that U(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 112

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 113

6.2.2. cusolverSp<t>csrlsvqr()

cusolverStatus_t
cusolverSpScsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvqr[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 114

This function solves the linear system

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse QR factorization,

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of R is
zero, i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The singularity is base-0, independent of base index of A.
For example, if 2nd column of A is the same as first column, then A is singular and
singularity = 1 which means R(1,1)≈0.

cusolver library provides two reordering schemes, symrcm and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of m elements that
contains the start of every row and the
end of the last row plus one.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 115

csrColIndA device host integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide if singular or not.

reorder host host no effect.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index
j such that R(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 116

6.2.3. cusolverSp<t>csrlsvchol()

cusolverStatus_t
cusolverSpScsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const float *b,
 float tol,
 int reorder,
 float *x,
 int *singularity);

cusolverStatus_t
cusolverSpDcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const double *b,
 double tol,
 int reorder,
 double *x,
 int *singularity);

cusolverStatus_t
cusolverSpCcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const cuComplex *b,
 float tol,
 int reorder,
 cuComplex *x,
 int *singularity);

cusolverStatus_t
cusolverSpZcsrlsvchol[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrVal,
 const int *csrRowPtr,
 const int *csrColInd,
 const cuDoubleComplex *b,
 double tol,
 int reorder,
 cuDoubleComplex *x,
 int *singularity);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 117

This function solves the linear system

A is an m×m symmetric postive definite sparse matrix that is defined in CSR storage
format by the three arrays csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-
side vector of size m, and x is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL and upper triangular
part of A is ignored (if parameter reorder is zero). In other words, suppose input matrix
A is decomposed as , where L is lower triangular, D is diagonal and U is upper
triangular. The function would ignore U and regard A as a symmetric matrix with the
formula . If parameter reorder is nonzero, the user has to extend A to a full
matrix, otherwise the solution would be wrong.

The linear system is solved by sparse Cholesky factorization,

where G is the Cholesky factor, a lower triangular matrix.

The output parameter singularity has two meanings:

‣ If A is not postive definite, there exists some integer k such that A(0:k, 0:k) is not
positive definite. singularity is the minimum of such k.

‣ If A is postive definite but near singular under tolerance (max(tol,0)), i.e. there
exists some integer k such that . singularity is the minimum of such
k.

singularity is base-0. If A is positive definite and not near singular under tolerance,
singularity is -1. If the user wants to know if A is postive definite or not, tol=0 is
enough.

cusolver library provides two reordering schemes, symrcm and symamd, to reduce
zero fill-in which dramactically affects the performance of LU factorization. The input
parameter reorder can enable symrcm (or symamd) if reorder is 1 (or 2), otherwise, no
reordering is performed.

Remark 1: the function works for in-place (x and b point to the same memory block) and
out-of-place.

Remark 2: the function only works on 32-bit index, if matrix G has large zero fill-in such
that number of nonzeros is bigger than , then CUSOLVER_STATUS_ALLOC_FAILED is
returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 118

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide singularity.

reorder host host no effect.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is symmetric postive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 119

6.2.4. cusolverSp<t>csrlsqvqr()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float tol,
 int *rankA,
 float *x,
 int *p,
 float *min_norm);

cusolverStatus_t
cusolverSpDcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double tol,
 int *rankA,
 double *x,
 int *p,
 double *min_norm);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 120

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 float tol,
 int *rankA,
 cuComplex *x,
 int *p,
 float *min_norm);

cusolverStatus_t
cusolverSpZcsrlsqvqr[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 double tol,
 int *rankA,
 cuDoubleComplex *x,
 int *p,
 double *min_norm);

This function solves the following least-square problem

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the least-square solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is square,
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has to
extend the matrix into its missing upper/lower part, otherwise the result is wrong.

This function only works if m is greater or equal to n, in other words, A is a tall matrix.

The least-square problem is solved by sparse QR factorization with column pivoting,

If A is of full rank (i.e. all columns of A are linear independent), then matrix P is an
identity. Suppose rank of A is k, less than n, the permutation matrix P reorders columns
of A in the following sense:

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 121

where and A have the same rank, but is almost zero, i.e. every column of is
linear combination of .

The input parameter tol decides numerical rank. The absolute value of every entry in
 is less than or equal to tolerance=max(tol,0).

The output parameter rankA denotes numerical rank of A.

Suppose and , the least square problem can be reformed by

or in matrix form

The output parameter min_norm is , which is minimum value of least-square
problem.

If A is not of full rank, above equation does not have a unique solution. The least-square
problem is equivalent to

Or equivalently another least-square problem

The output parameter x is , the solution of least-square problem.

The output parameter p is a vector of size n. It corresponds to a permutation matrix P.
p(i)=j means (P*x)(i) = x(j). If A is of full rank, p=0:n-1.

Remark 1: p is always base 0, independent of base index of A.

Remark 2: only CPU (Host) path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolver library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 122

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide rank of A.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

rankA host host numerical rank of A.

x device host solution vector of size n, x=pinv(A)*b.

p device host a vector of size n, which represents
the permuation matrix P satisfying
A*P^T=Q*R.

min_norm host host ||A*x-b||, x=pinv(A)*b.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 123

6.2.5. cusolverSp<t>csreigvsi()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 float mu0,
 const float *x0,
 int maxite,
 float tol,
 float *mu,
 float *x);

cusolverStatus_t
cusolverSpDcsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 double mu0,
 const double *x0,
 int maxite,
 double tol,
 double *mu,
 double *x);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 124

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsreigvsi[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex mu0,
 const cuComplex *x0,
 int maxite,
 float tol,
 cuComplex *mu,
 cuComplex *x);

cusolverStatus_t
cusolverSpZcsreigvsi(cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex mu0,
 const cuDoubleComplex *x0,
 int maxite,
 double tol,
 cuDoubleComplex *mu,
 cuDoubleComplex *x);

This function solves the simple eigenvalue problem by shift-inverse method.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. The output paramter x is the approximated
eigenvector of size m,

The following shift-inverse method corrects eigenpair step-by-step until convergence.

It accepts several parameters:

mu0 is an initial guess of eigenvalue. The shift-inverse method will converge to the
eigenvalue mu nearest mu0 if mu is a singleton. Otherwise, the shift-inverse method may
not converge.

x0 is an initial eigenvector. If the user has no preference, just chose x0 randomly. x0
must be nonzero. It can be non-unit length.

tol is the tolerance to decide convergence. If tol is less than zero, it would be treated as
zero.

maxite is maximum number of iterations. It is useful when shift-inverse method
does not converge because the tolerance is too small or the desired eigenvalue is not a
singleton.
Shift-Inverse Method

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 125

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the
matrix into its missing upper/lower part, otherwise the result is wrong.

Remark 1: [cu|h]solver[S|D]csreigvsi only allows mu0 as a real number. This
works if A is symmetric. Otherwise, the non-real eigenvalue has a conjugate counterpart
on the complex plan, and shift-inverse method would not converge to such eigevalue
even the eigenvalue is a singleton. The user has to extend A to complex numbre and call
[cu|h]solver[C|Z]csreigvsi with mu0 not on real axis.

Remark 2: the tolerance tol should not be smaller than |mu0|*eps, where eps is
machine zero. Otherwise, shift-inverse may not converge because of small tolerance.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolver library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

mu0 host host initial guess of eigenvalue.

x0 device host initial guess of eigenvector, a vecotr of
size m.

maxite host host maximum iterations in shift-inverse
method.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 126

tol host host tolerance for convergence.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

mu device host approximated eigenvalue nearest mu0
under tolerance.

x device host approximated eigenvector of size m.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 127

6.2.6. cusolverSp<t>csreigs()

cusolverStatus_t
solverspScsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex left_bottom_corner,
 cuComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpDcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex left_bottom_corner,
 cuDoubleComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpCcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex left_bottom_corner,
 cuComplex right_upper_corner,
 int *num_eigs);

cusolverStatus_t
cusolverSpZcsreigs[Host](cusolverSpHandle_t handle,
 int m,
 int nnz,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex left_bottom_corner,
 cuDoubleComplex right_upper_corner,
 int *num_eigs);

This function computes number of algebraic eigenvalues in a given box B by contour
integral

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 128

where closed line C is boundary of the box B which is a rectangle specified by two
points, one is left bottom corner (input parameter left_botoom_corner) and the other
is right upper corner (input parameter right_upper_corner). P(z)=det(A - z*I) is
the characteristic polynomial of A.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The output parameter num_eigs is number of algebraic eigenvalues in the box B. This
number may not be accurate due to several reasons:

1. the contour C is close to some eigenvalues or even passes through some eigenvalues.

2. the numerical integration is not accurate due to coarse grid size. The default resolution
is 1200 grids along contour C uniformly.

Even though csreigs may not be accurate, it still can give the user some idea how
many eigenvalues in a region where the resolution of disk theorem is bad. For example,
standard 3-point stencil of finite difference of Laplacian operator is a tridiagonal matrix,
and disk theorem would show "all eigenvalues are in the interval [0, 4*N^2]" where N is
number of grids. In this case, csreigs is useful for any interval inside [0, 4*N^2].

Remark 1: if A is symmetric in real or hermitian in complex, all eigenvalues are real.
The user still needs to specify a box, not an interval. The height of the box can be much
smaller than the width.

Remark 2: only CPU (Host) path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz csrRowPtrA(m)
 csrRowPtrA(0) nonzero elements of

matrix A.

csrRowPtrA device host integer array of m elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz csrRowPtrA(m)
 csrRowPtrA(0) column indices of the

nonzero elements of matrix A.

left_bottom_corner host host left bottom corner of the box.

right_upper_corner host host right upper corner of the box.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 129

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

num_eigs host host number of algebraic eigenvalues in a box.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.3. Low Level Function Reference
This section describes low level API of cuSolverSP, including symrcm and batched QR.

6.3.1. cusolverSpXcsrsymrcm()

cusolverStatus_t
cusolverSpXcsrsymrcmHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

This function implements Symmetric Reverse Cuthill-McKee permutation. It returns a
permutation vector p such that A(p,p) would concentrate nonzeros to diagonal. This is
equivalent to symrcm in MATLAB, however the result may not be the same because of
different heuristics in the pseudoperipheral finder. The cuSolverSP library implements
symrcm based on the following two papers:

E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM
'69 Proceedings of the 1969 24th national conference, Pages 157-172

Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder,
ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979,
Pages 284-295

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 130

The output parameter p is an integer array of n elements. It represents a permutation
array and it indexed using the base-0 convention. The permutation array p corresponds
to a permutation matrix P, and satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally rcm works
on , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 131

6.3.2. cusolverSpXcsrsymmdq()

cusolverStatus_t
cusolverSpXcsrsymmdqHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

This function implements Symmetric Minimum Degree Algorithm based on Quotient
Graph. It returns a permutation vector p such that A(p,p) would have less zero fill-in
during Cholesky factorization. The cuSolverSP library implements symmdq based on
the following two papers:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm
Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3,
September 1980, page 337-358.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally mdq works
on , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 132

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.3.3. cusolverSpXcsrsymamd()

cusolverStatus_t
cusolverSpXcsrsymamdHost(cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int *p);

This function implements Symmetric Approximate Minimum Degree Algorithm based
on Quotient Graph. It returns a permutation vector p such that A(p,p) would have less
zero fill-in during Cholesky factorization. The cuSolverSP library implements symamd
based on the following paper:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 133

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally amd works
on , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 134

6.3.4. cusolverSpXcsrperm()

cusolverStatus_t
cusolverSpXcsrperm_bufferSizeHost(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 int *csrRowPtrA,
 int *csrColIndA,
 const int *p,
 const int *q,
 size_t *bufferSizeInBytes);

cusolverStatus_t
cusolverSpXcsrpermHost(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 int *csrRowPtrA,
 int *csrColIndA,
 const int *p,
 const int *q,
 int *map,
 void *pBuffer);

Given a left permutation vector p which corresponds to permutation matrix P and a
right permutation vector q which corresponds to permutation matrix Q, this function
computes permutation of matrix A by

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA.

The operation is in-place, i.e. the matrix A is overwritten by B.

The permutation vector p and q are base 0. p performs row permutation while q
performs column permutation. One can also use MATLAB command to
permutate matrix A.

This function only computes sparsity pattern of B. The user can use parameter map to
get csrValB as well. The parameter map is an input/output. If the user sets map=0:1:
(nnzA-1) before calling csrperm, csrValB=csrValA(map).

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and
only lower/upper part is provided, the user has to pass into this function.

This function requires a buffer size returned by csrperm_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSOLVER_STATUS_INVALID_VALUE is returned.

For example, if matrix A is

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 135

and left permutation vector p=(0,2,1), right permutation vector q=(2,1,0), then
 is

Remark 1: only CPU (Host) path is provided.

Remark 2: the user can combine csrsymrcm and csrperm to get which has less
zero fill-in during QR factorization.
Input

parameter cusolverSp
MemSpace

description

handle host handle to the cuSolver library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix A.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

p host left permutation vector of size m.

q host right permutation vector of size n.

map host integer array of nnzA indices. If the user wants to
get relationship between A and B, map must be set
0:1:(nnzA-1).

pBuffer host buffer allocated by the user, the size is returned
by csrperm_bufferSize().

Output

parameter hsolver description

csrRowPtrA host integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix B.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 136

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix B.

map host integer array of nnzA indices that maps matrix A
to matrix B.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.3.5. cusolverSpXcsrqrBatched()
The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_t
cusolverSpCreateCsrqrInfo(csrqrInfo_t *info);

cusolverStatus_t
cusolverSpDestroyCsrqrInfo(csrqrInfo_t info);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 137

Analysis is the same for all data types, but each data type has a unique buffer size.

cusolverStatus_t
cusolverSpXcsrqrAnalysisBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo_t info);

cusolverStatus_t
cusolverSpScsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 138

Calculate buffer sizes for complex valued data types.

cusolverStatus_t
cusolverSpCcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 int batchSize,
 csrqrInfo_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 139

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const float *b,
 float *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnz,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const double *b,
 double *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 140

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuComplex *b,
 cuComplex *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrqrsvBatched(cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 const cuDoubleComplex *b,
 cuDoubleComplex *x,
 int batchSize,
 csrqrInfo_t info,
 void *pBuffer);

The batched sparse QR factorization is used to solve either a set of least-squares
problems

or a set of linear systems

where each is a m×n sparse matrix that is defined in CSR storage format by the four
arrays csrValA, csrRowPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and
only lower/upper part is prvided, the user has to pass into this function.

The prerequisite to use batched sparse QR has two-folds. First all matrices must have
the same sparsity pattern. Second, no column pivoting is used in least-square problem,
so the solution is valid only if is of full rank for all j = 1,2,..., batchSize
. All matrices have the same sparity pattern, so only one copy of csrRowPtrA and
csrColIndA is used. But the array csrValA stores coefficients of one after another. In
other words, csrValA[k*nnzA : (k+1)*nnzA] is the value of .

The batched QR uses opaque data structure csrqrInfo to keep intermediate data, for
example, matrix Q and matrix R of QR factorization. The user needs to create csrqrInfo
first by cusolverSpCreateCsrqrInfo before any function in batched QR operation.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 141

The csrqrInfo would not release internal data until cusolverSpDestroyCsrqrInfo
is called.

There are three routines in batched sparse QR, cusolverSpXcsrqrAnalysisBatched,
cusolverSp[S|D|C|Z]csrqrBufferInfoBatched and cusolverSp[S|D|C|
Z]csrqrsvBatched.

First, cusolverSpXcsrqrAnalysisBatched is the analysis phase, used to analyze
sparsity pattern of matrix Q and matrix R of QR factorization. Also parallelism is
extracted during analysis phase. Once analysis phase is done, the size of working space
to perform QR is known. However cusolverSpXcsrqrAnalysisBatched uses CPU
to analyze the structure of matrix A, and this may consume a lot of memory. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED
is returned. The required memory for analysis is proportional to zero fill-in in QR
factorization. The user may need to perform some kind of reordering to minimize zero
fill-in, for example, colamd or symrcm in MATLAB. cuSolverSP library provides
symrcm (cusolverSpXcsrsymrcm).

Second, the user needs to choose proper batchSize and to prepare working space
for sparse QR. There are two memory blocks used in batched sparse QR. One is
internal memory block used to store matrix Q and matrix R. The other is working space
used to perform numerical factorization. The size of the former is proportional to
batchSize, and the size is specified by returned parameter internalDataInBytes
of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. while the size of the latter is
almost independent of batchSize, and the size is specified by returned parameter
workspaceInBytes of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. The
internal memory block is allocated implicitly during first call of cusolverSp[S|D|C|
Z]csrqrsvBatched. The user only needs to allocate working space for cusolverSp[S|
D|C|Z]csrqrsvBatched.

Instead of trying all batched matrices, the user can find maximum batchSize
by querying cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. For example,
the user can increase batchSize till summation of internalDataInBytes and
workspaceInBytes is greater than size of available device memory.

Suppose that the user needs to perform 253 linear solvers and available device memory
is 2GB. if cusolverSp[S|D|C|Z]csrqrsvBatched can only afford batchSize 100,
the user has to call cusolverSp[S|D|C|Z]csrqrsvBatched three times to finish all.
The user calls cusolverSp[S|D|C|Z]csrqrBufferInfoBatched with batchSize
100. The opaque info would remember this batchSize and any subsequent call of
cusolverSp[S|D|C|Z]csrqrsvBatched cannot exceed this value. In this example, the
first two calls of cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 100, and
last call of cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 53.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 142

Example: suppose that A0, A1, .., A9 have the same sparsity pattern, the following code
solves 10 linear systems by batched sparse QR.

// Suppose that A0, A1, .., A9 are m x m sparse matrix represented by CSR
 format,
// Each matrix Aj has nonzero nnzA, and shares the same csrRowPtrA and
 csrColIndA.
// csrValA is aggregation of A0, A1, ..., A9.
int m ; // number of rows and columns of each Aj
int nnzA ; // number of nonzeros of each Aj
int *csrRowPtrA ; // each Aj has the same csrRowPtrA
int *csrColIndA ; // each Aj has the same csrColIndA
double *csrValA ; // aggregation of A0,A1,...,A9
cont int batchSize = 10; // 10 linear systems

cusolverSpHandle_t handle; // handle to cusolver library
csrqrInfo_t info = NULL;
cusparseMatDescr_t descrA = NULL;
void *pBuffer = NULL; // working space for numerical factorization

// step 1: create a descriptor
cusparseCreateMatDescr(&descrA);
cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // A is base-1
cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL); // A is a general
 matrix

// step 2: create empty info structure
cusolverSpCreateCsrqrInfo(&info);

// step 3: symbolic analysis
cusolverSpXcsrqrAnalysisBatched(
 handle, m, m, nnzA,
 descrA, csrRowPtrA, csrColIndA, info);

// step 4: allocate working space for Aj*xj=bj
cusolverSpDcsrqrBufferInfoBatched(
 handle, m, m, nnzA,
 descrA,
 csrValA, csrRowPtrA, csrColIndA,
 batchSize,
 info,
 &internalDataInBytes,
 &workspaceInBytes);

cudaMalloc(&pBuffer, workspaceInBytes);

// step 5: solve Aj*xj = bj
cusolverSpDcsrqrsvBatched(
 handle, m, m, nnzA,
 descrA, csrValA, csrRowPtrA, csrColIndA,
 b,
 x,
 batchSize,
 info,
 pBuffer);

// step 7: destroy info
cusolverSpDestroyCsrqrInfo(info);

Please refer to Appendix B for detailed examples.

Remark 1: only GPU (device) path is provided.
Input

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 143

parameter cusolverSp
MemSpace

description

handle host handle to the cuSolverSP library context.

m host number of rows of each matrix Aj.

n host number of columns of each matrix Aj.

nnzA host number of nonzeros of each matrix Aj. It is the
size csrColIndA.

descrA host the descriptor of each matrix Aj. The supported
matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device <type> array of nnzA*batchSize nonzero
elements of matrices A0, A1, All matrices
are aggregated one after another.

csrRowPtrA device integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA device integer array of nnzAcolumn indices of the
nonzero elements of each matrix Aj.

b device <type> array of m*batchSize of right-hand-side
vectors b0, b1, All vectors are aggregated
one after another.

batchSize host number of systems to be solved.

info host opaque structure for QR factorization.

pBuffer device buffer allocated by the user, the size is returned
by cusolverSpXcsrqrBufferInfoBatched().

Output

parameter cusolverSp
MemSpace

description

x device <type> array of m*batchSize of solution vectors
x0, x1, All vectors are aggregated one
after another.

internalDataInBytes host number of bytes of the internal data.

workspaceInBytes host number of bytes of the buffer in numerical
factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 144

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4. cuda 7.5 Preview
This section describes new low level APIs of cuSolverSP in cuda 7.5. The low level APIs
include sparse LU, sparse Cholesky and sparse QR. The user has to include header file
cusolverSp_LOWLEVEL_PREVIEW.h.

LU, Cholesky and QR have the same flow, including

‣ analysis phase to find sparsity pattern of numerical factor.
‣ query size of buffer.
‣ numerical factorization.
‣ report singularity of numerical factorization.
‣ numerical solve to complete linear solver or least-square solver.

The user has to follow the above sequence to perform either a linear solver or a least-
square solver.

6.4.1. cusolverSpXcsrlu()
The sparse LU factorization is used to factorize matrix A in the following form

A is a n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA. P is a left permutation matrix mainly on
pivoting and Q is a right permutation matrix from postordering of the elimination tree.
L is a lower triangular matrix with implicit diagonal one while U is a upper triangular
matrix.

If A is symmetric, the user has to extend it to a full matrix and sets the matrix type as
CUSPARSE_MATRIX_TYPE_GENERAL.

The low-level API does not reorder the matrix to minimize zero fill-in. The user can use
cusolverSpXcsrsymrcm or cusolverSpXcsrsymamd to reorder the matrix to reduce
zero fill-in.

cusolverSP LU can be first step of refactorization. Please refer SDK
samples/7_CUDALibraries/cuSolverRf.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 145

6.4.1.1. cusolverSpCreateCsrluInfo()
The create and destroy methods start and end the lifetime of a csrluInfo object.

cusolverStatus_t
cusolverSpCreateCsrluInfo[Host](csrluInfo[Host]_t *info);

cusolverStatus_t
cusolverSpDestroyCsrluInfo[Host](csrluInfo[Host]_t info);

The function cusolverSpCreateCsrluInfo creates and initializes the opaque
structure of LU to default values.

The function cusolverSpDestroyCsrluInfo releases any memory required by the
structure.

Remark 1: only CPU path is provided.
Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host opaque structure for LU factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

6.4.1.2. cusolverSpXcsrluAnalysis()

cusolverStatus_t
cusolverSpXcsrluAnalysis[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info);

This function analyzes sparsity pattern of matrix L and matrix U of LU factorization.
The pivoting is determined at runtime, so only superset of L and U can be found.
After analysis, the size of working space to perform LU can be retrieved from
cusolverSpXcsrluBufferInfo.

The analysis phase needs working space to estimate sparsity pattern of L and U. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is
returned.

Remark 1: only CPU path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 146

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host recording scheduling information used in
numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 147

6.4.1.3. cusolverSpXcsrluBufferInfo()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrluBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrluBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

There are two memory blocks used in sparse LU. One is internal memory used
to store matrix L and matrix U. The other is working space used to perform
numerical factorization. The size of the former is specified by returned parameter

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 148

internalDataInBytes; while the size of the latter is specified by returned parameter
workspaceInBytes.

The first call of cusolverSpXcsrluFactor would allocate L and U whose
size is bounded by internalDataInBytes. Once internal memory (of size
internalDataInBytes bytes) is allocated by cusolverSpXcsrluFactor, the life
time is the same as info. Such internal memory is different from working space of size
workspaceInBytes bytes, whose life time starts at the beginning of the calling function
and ends when the function returns.

Remark 1: only CPU path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for LU factorization.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

internalDataInBytes host host number of bytes of the internal data.

workspaceInBytes host host number of bytes of the buffer in
numerical factorization.

info host host recording internal parameters for buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 149

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.1.4. cusolverSpXcsrluFactor()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 float pivot_threshold,
 void *pBuffer);

cusolverSpDcsrluFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 double pivot_threshold,
 void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 float pivot_threshold,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrluFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrluInfo[Host]_t info,
 double pivot_threshold,
 void *pBuffer);

This function performs numerical factorization

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 150

The first call to cusolverSpXcsrluFactor would allocate space for L and U. If the
memory is insufficient, CUSOLVER_STATUS_ALLOC_FAILED is returned. The numerical
factor L and U are kept in structure info and can be used in cusolverSpXcsrluSolve.

The parameter pivot_threshold is for diagonal pivoting. The value is between 0
and 1. If pivot_threshold is 0, then no pivoting is chosen; if pivot_threshold is 1,
traditional pivoting is chosen. Assuming that first j-1 columns are done, A is updated,
and ξ = max{|A(j:end,j)|} is the condition of traditional pivoting, the formula to
choose diagonal A(j,j) as the pivot is

Remark 1: only CPU path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for LU factorization.

pivot_threshold host host a threshold to enable diagonal pivoting.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host containing numerical factor L and Q.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 151

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.1.5. cusolverSpXcsrluZeroPivot()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluZeroPivot[Host](cusolverSpHandle_t handle,
 csrluInfo[Host]_t info,
 float tol,
 int *position);

cusolverStatus_t
cusolverSpDcsrluZeroPivot[Host](cusolverSpHandle_t handle,
 csrluInfo[Host]_t info,
 double tol,
 int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluZeroPivot[Host](cusolverSpHandle_t handle,
 csrluInfo[Host]_t info,
 float tol,
 int *position);
cusolverStatus_t
cusolverSpZcsrluZeroPivot[Host](cusolverSpHandle_t handle,
 csrluInfo[Host]_t info,
 double tol,
 int *position);

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of U
are zero, i.e.

The output parameter position is the smallest index of such j. If A is non-singular,
position is -1. The index is base-0, independent of base index of A. For example, if 2nd
column of A is the same as first column, then A is singular and position = 1 which
means U(1,1)≈0.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.

Remark 1: only a CPU path is provided.

Remark 2: This routine is not intended to prove that a matrix is singular or non-singular,
but to show the need for pivoting. When the pivot threshold is set to 0.0 (no pivoting)
this routine may return false positives, ie show a zero pivot when the matrix is not
singular. When the pivoting threshold is 1.0, you can trust the output of the zero-pivot
routine.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 152

Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

info host host opaque structure for LU factorization.

tol host host tolerance to determine singularity.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

position host host -1 if A is non-singular; otherwise, first
column that U(j,j) is zero under given
tolerance.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

6.4.1.6. cusolverSpXcsrluSolve()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluSolve[Host](cusolverSpHandle_t handle,
 int n,
 const float *b,
 float *x,
 csrluInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrluSolve[Host](cusolverSpHandle_t handle,
 int n,
 const double *b,
 double *x,
 csrluInfo[Host]_t info,
 void *pBuffer);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 153

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluSolve[Host](cusolverSpHandle_t handle,
 int n,
 const cuComplex *b,
 cuComplex *x,
 csrluInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrluSolve[Host](cusolverSpHandle_t handle,
 int n,
 const cuDoubleComplex *b,
 cuDoubleComplex *x,
 csrluInfo[Host]_t info,
 void *pBuffer);

This function solves the linear system by forward and backward substitution.
The user has to complete numerical factorization before calling this function. If
numerical factorization is not done, CUSOLVER_STATUS_INVALID_VALUE is returned.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.

Remark 1: only CPU path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

b device host <type> array of n of right-hand-side
vectors b.

info host host opaque structure for LU factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host <type> array of n of solution vectors x.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 154

6.4.1.7. cusolverSpXcsrluExtract()

cusolverStatus_t
cusolverSpXcsrluNnz[Host](cusolverSpHandle_t handle,
 int *nnzLRef,
 int *nnzURef,
 csrluInfo[Host]_t info);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrluExtract[Host](cusolverSpHandle_t handle,
 int *P,
 int *Q,
 const cusparseMatDescr_t descrL,
 float *csrValL,
 int *csrRowPtrL,
 int *csrColIndL,
 const cusparseMatDescr_t descrU,
 float *csrValU,
 int *csrRowPtrU,
 int *csrColIndU,
 csrluInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrluExtract[Host](cusolverSpHandle_t handle,
 int *P,
 int *Q,
 const cusparseMatDescr_t descrL,
 double *csrValL,
 int *csrRowPtrL,
 int *csrColIndL,
 const cusparseMatDescr_t descrU,
 double *csrValU,
 int *csrRowPtrU,
 int *csrColIndU,
 csrluInfo[Host]_t info,
 void *pBuffer);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 155

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrluExtract[Host](cusolverSpHandle_t handle,
 int *P,
 int *Q,
 const cusparseMatDescr_t descrL,
 cuComplex *csrValL,
 int *csrRowPtrL,
 int *csrColIndL,
 const cusparseMatDescr_t descrU,
 cuComplex *csrValU,
 int *csrRowPtrU,
 int *csrColIndU,
 csrluInfo[Host]_t info,
 void *pBuffer);
cusolverStatus_t
cusolverSpZcsrluExtract[Host](cusolverSpHandle_t handle,
 int *P,
 int *Q,
 const cusparseMatDescr_t descrL,
 cuDoubleComplex *csrValL,
 int *csrRowPtrL,
 int *csrColIndL,
 const cusparseMatDescr_t descrU,
 cuDoubleComplex *csrValU,
 int *csrRowPtrU,
 int *csrColIndU,
 csrluInfo[Host]_t info,
 void *pBuffer);

The function cusolverSpXcsrluExtract extracts information of LU factorization,
including left permutation vector P, right permutation vector Q, lower triangular matrix
L and upper triangular matrix U.

P, Q, L and U satisfy the relation

First, the user gathers the nonzeros of L and U from cusolverSpXcsrluNnz;
then allocates CSR of L and CSR of U; finally retrieves matrix L and U from
cusolverSpXcsrluExtract.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.

Remark 1: L has diagonal one implicitly.

Remark 2: permutation vectors P and Q are base-0.

Remark 3: only CPU path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 156

descrL host host the descriptor of matrix L.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

descrU host host the descriptor of matrix U.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

info host host opaque structure for LU factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrluBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

nnzLRef host host number of nonzeros of matrix L.

nnzURef host host number of nonzeros of matrix U.

P device host integer array of n of left permutation
vector.

Q device host integer array of n of right permutation
vector.

csrValL device host <type> array of nnzL nonzero elements of
matrix L.

csrRowPtrL device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one of matrix L.

csrColIndL device host integer array of nnzLcolumn indices of
the nonzero elements of matrix L.

csrValU device host <type> array of nnzU nonzero elements of
matrix U.

csrRowPtrU device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one of matrix U.

csrColIndU device host integer array of nnzUcolumn indices of
the nonzero elements of matrix U.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence or base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 157

6.4.2. cusolverSpXcsrqr()
The sparse QR factorization is used to factorize matrix A in the following form

A is a m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA.

The QR factorization only works if m is not less than n.

The following three applications can take advantage of sparse QR.

1. linear solver:

2. least-square solver:

3. eigenvalue solver:

To cover above three applications within the same flow, factorization phase is separated
by two steps

Step 1: shift diagonal of A by μ.

This is designed for eigenvalue solver, mainly on shift-inverse power method. For linear
solver and least-square solver, the user should set μ to zero.

Step 2: numerical factorization

If A is not of full rank, cusolverSpXcsrqrZeroPivot would report singularity.

6.4.2.1. cusolverSpCreateCsrqrInfo()
The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_t
cusolverSpCreateCsrqrInfo[Host](csrqrInfo[Host]_t *info);

cusolverStatus_t
cusolverSpDestroyCsrqrInfo[Host](csrqrInfo[Host]_t info);

The function cusolverSpCreateCsrqrInfo creates and initializes the opaque
structure of QR to default values.

The function cusolverSpDestroyCsrqrInfo releases any memory required by the
structure.
Output

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 158

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host opaque structure for QR factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

6.4.2.2. cusolverSpXcsrqrAnalysis()

cusolverStatus_t
cusolverSpXcsrqrAnalysis[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo[Host]_t info);

This function analyzes sparsity pattern of matrix H and matrix R of QR factorization.
After analysis, the size of working space to perform QR can be retrieved from
cusolverSpXcsrqrBufferInfo.

The analysis phase needs working space to find sparsity pattern of H and R. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is
returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

Output

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 159

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host recording scheduling information used in
numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.2.3. cusolverSpXcsrqrBufferInfo()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrBufferInfo[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrqrBufferInfo[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 160

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrBufferInfo[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrqrBufferInfo[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrqrInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

There are two memory blocks used in sparse QR. One is internal memory used
to store matrix H and matrix R. The other is working space used to perform
numerical factorization. The size of the former is specified by returned parameter
internalDataInBytes; while the size of the latter is specified by returned parameter
workspaceInBytes.

The first call of cusolverSpXcsrqrSetup would allocate H and R whose
size is bounded by internalDataInBytes. Once internal memory (of size
internalDataInBytes bytes) is allocated by cusolverSpXcsrqrSetup, the life time
is the same as info. Such internal memory is different from working space of size
workspaceInBytes bytes, whose life time starts at the beginning of the calling function
and ends when the function returns.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 161

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for QR factorization.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

internalDataInBytes host host number of bytes of the internal data.

workspaceInBytes host host number of bytes of the buffer in
numerical factorization.

info host host recording internal parameters for buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.2.4. cusolverSpXcsrqrSetup()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrSetup[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 float mu,
 csrqrInfo[Host]_t info);

cusolverSpDcsrqrSetup[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 double mu,
 csrqrInfo[Host]_t info);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 162

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrSetup[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuComplex mu,
 csrqrInfo[Host]_t info);

cusolverStatus_t
cusolverSpZcsrqrSetup[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 cuDoubleComplex mu,
 csrqrInfo[Host]_t info);

This function shifts diagonal of A by parameter mu such that we can factorize

For linear solver, the user just sets mu to zero. For eigenvalue solver, mu can be a value of
shift in inverse-power method.

The first call to cusolverSpXcsrqrSetup would allocate space for H and R. If the
memory is insufficient, CUSOLVER_STATUS_ALLOC_FAILED is returned. The numerical
factor H and R are kept in structure info and can be used in cusolverSpXcsrqrSolve.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 163

csrRowPtrA device host integer array of m+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

mu host host value of shift.

info host host opaque structure for QR factorization.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host subtract mu from diagonal of A.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.2.5. cusolverSpXcsrqrFactor()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrFactor[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 float *b,
 float *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

cusolverSpDcsrqrFactor[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 double *b,
 double *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 164

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrFactor[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 cuComplex *b,
 cuComplex *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrqrFactor[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 int nnzA,
 cuDoubleComplex *b,
 cuDoubleComplex *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

This function performs numerical factorization

cusolverSpXcsrqrSetup subtracts μ from A. The numerical factor H and R are kept in
structure info and can be used in cusolverSpXcsrqrSolve.

If either x or b is nil, only factorization is done. The user needs
cusolverSpXcsrqrSolve to find the least-square solution.

If both x and b are not nil, QR factorization and solve are combined together. b is
overwritten by c and x is the solution of least-square.

In this case, the user does not need cusolverSpXcsrqrSolve.

It would be better to combine factorization and solve together for GPU because solve
phase is sequential.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnzA host host number of nonzeros of matrix A.

b device host <type> array of m elements of right-hand-
side vector.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 165

info host host opaque structure for QR factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrqrBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host containing numerical factor H and R.

x device host <type> array of n elements of least-
square solution if x and b are not nil.

b device host overwritten by c if x and b are not nil.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

6.4.2.6. cusolverSpXcsrqrZeroPivot()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrZeroPivot[Host](cusolverSpHandle_t handle,
 csrqrInfo[Host]_t info,
 float tol,
 int *position);

cusolverStatus_t
cusolverSpDcsrqrZeroPivot[Host](cusolverSpHandle_t handle,
 csrqrInfo[Host]_t info,
 double tol,
 int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrZeroPivot[Host](cusolverSpHandle_t handle,
 csrqrInfo[Host]_t info,
 float tol,
 int *position);
cusolverStatus_t
cusolverSpZcsrqrZeroPivot[Host](cusolverSpHandle_t handle,
 csrqrInfo[Host]_t info,
 double tol,
 int *position);

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 166

If A is not full rank under given tolerance (max(tol,0)), then some diagonal elements of
R is zero, i.e.

The output parameter position is the smallest index of such j. If A is of full rank,
position is -1. The index is base-0, independent of base index of A. For example, if 2nd
column of A is the same as first column, then A is rank deficient and position = 1
which means R(1,1)≈0.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

info host host opaque structure for QR factorization.

tol host host tolerance to determine singularity.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

position host host -1 if A is non-singular; otherwise, first
column that R(j,j) is zero under given
tolerance.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 167

6.4.2.7. cusolverSpXcsrqrSolve()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrqrSolve[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 float *b,
 float *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrqrSolve[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 double *b,
 double *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrqrSolve[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 cuComplex *b,
 cuComplex *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrqrSolve[Host](cusolverSpHandle_t handle,
 int m,
 int n,
 cuDoubleComplex *b,
 cuDoubleComplex *x,
 csrqrInfo[Host]_t info,
 void *pBuffer);

This function solves the following least-square problem

b is overwritten by c and x is the solution of least-square.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.

Remark 1: matrix A is actually

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 168

Remark 2:
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

b device host <type> array of m of right-hand-side
vectors b.

info host host opaque structure for LU factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrqrBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host <type> array of n of solution vectors x.

b device host overwritten by c.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

6.4.3. cusolverSpXcsrchol()
The sparse Cholesky factorization is used to factorize symmetric positive definite matrix
A in the following form

A is a n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA. The low-level API only factors lower triangle
part of A. The upper triangular part is assumed to be symmetric of lower triangular part
implicitly.

The low-level API does not reorder the matrix to minimize zero fill-in. The user can use
cusolverSpXcsrsymrcm or cusolverSpXcsrsymamd to reorder the matrix to reduce
zero fill-in. The permutation matrix P is the post-ordering of elimination tree.

The Choleksy factor L is a lower triangular matrix which is more denser
than A. The diagonal of L is positive if A is positive definite. Otherwise,
cusolverSpXcsrcholZeroPivot can report singularity.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 169

To solve a linear system , the user needs symbolic analysis
from cusolverSpXcsrcholAnalysis, numerical factorization from
cusolverSpXcsrcholFactor and forward/backward substitution from
cusolverSpXcsrcholSolve.

6.4.3.1. cusolverSpCreateCsrcholInfo()
The create and destroy methods start and end the lifetime of a csrcholInfo object.

cusolverStatus_t
cusolverSpCreateCsrcholInfo[Host](csrcholInfo[Host]_t *info);

cusolverStatus_t
cusolverSpDestroyCsrcholInfo[Host](csrcholInfo[Host]_t info);

The function cusolverSpCreateCsrcholInfo creates and initializes the opaque
structure of Cholesky to default values.

The function cusolverSpDestroyCsrcholInfo releases any memory required by the
structure.
Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host opaque structure for Cholesky
factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

6.4.3.2. cusolverSpXcsrcholAnalysis()

cusolverStatus_t
cusolverSpXcsrcholAnalysis[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info);

This function analyzes sparsity pattern of matrix L of Cholesky factorization. After
analysis, the size of working space to perform Cholesky can be retrieved from
cusolverSpXcsrcholBufferInfo.

The analysis phase needs working space to find sparsity pattern of L. If host memory is
not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED is returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 170

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host recording scheduling information used in
numerical factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 171

6.4.3.3. cusolverSpXcsrcholBufferInfo()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrcholBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpDcsrcholBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrcholBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

cusolverStatus_t
cusolverSpZcsrcholBufferInfo[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 size_t *internalDataInBytes,
 size_t *workspaceInBytes);

There are two memory blocks used in sparse Cholesky. One is internal memory used to
store matrix L. The other is working space used to perform numerical factorization. The
size of the former is specified by returned parameter internalDataInBytes; while the
size of the latter is specified by returned parameter workspaceInBytes.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 172

The first call of cusolverSpXcsrcholFactor would allocate L whose size is bounded
by internalDataInBytes. Once internal memory (of size internalDataInBytes
bytes) is allocated by cusolverSpXcsrcholFactor, the life time is the same as info.
Such internal memory is different from working space of size workspaceInBytes
bytes, whose life time starts at the beginning of the calling function and ends when the
function returns.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for Cholesky
factorization.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

internalDataInBytes host host number of bytes of the internal data.

workspaceInBytes host host number of bytes of the buffer in
numerical factorization.

info host host recording internal parameters for buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 173

6.4.3.4. cusolverSpXcsrcholFactor()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrcholFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const float *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 void *pBuffer);

cusolverSpDcsrcholFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const double *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrcholFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrcholFactor[Host](cusolverSpHandle_t handle,
 int n,
 int nnzA,
 const cusparseMatDescr_t descrA,
 const cuDoubleComplex *csrValA,
 const int *csrRowPtrA,
 const int *csrColIndA,
 csrcholInfo[Host]_t info,
 void *pBuffer);

This function performs numerical factorization

The first call to cusolverSpXcsrcholFactor would allocate space for L. If the memory
is insufficient, CUSOLVER_STATUS_ALLOC_FAILED is returned. The numerical factor L is
kept in structure info and can be used in cusolverSpXcsrcholSolve.
Input

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 174

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA nonzero elements of
matrix A.

csrRowPtrA device host integer array of n+1 elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzAcolumn indices of
the nonzero elements.

info host host opaque structure for Cholesky
factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrcholBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

info host host containing numerical factor L.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 175

6.4.3.5. cusolverSpXcsrcholZeroPivot()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrcholZeroPivot[Host](cusolverSpHandle_t handle,
 csrcholInfo[Host]_t info,
 float tol,
 int *position);

cusolverStatus_t
cusolverSpDcsrcholZeroPivot[Host](cusolverSpHandle_t handle,
 csrcholInfo[Host]_t info,
 double tol,
 int *position);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrcholZeroPivot[Host](cusolverSpHandle_t handle,
 csrcholInfo[Host]_t info,
 float tol,
 int *position);
cusolverStatus_t
cusolverSpZcsrcholZeroPivot[Host](cusolverSpHandle_t handle,
 csrcholInfo[Host]_t info,
 double tol,
 int *position);

If A is not postive definite, there exists some integer k such that A(0:k, 0:k) is not
positive definite. The output parameter position is the minimum of such k.

If A is postive definite but near singular under tolerance (max(tol,0)), i.e. there exists
some integer k such that . The output parameter position is the minimum
of such k.

If A is non-singular, position is -1. The position is base-0, independent of base index
of A.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

info host host opaque structure for Cholesky
factorization.

tol host host tolerance to determine singularity.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 176

position host host -1 if A is non-singular; otherwise, smallest
k that A(0:k,0:k) is not positive
definite under given tolerance.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

6.4.3.6. cusolverSpXcsrcholSolve()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverSpScsrcholSolve[Host](cusolverSpHandle_t handle,
 int n,
 const float *b,
 float *x,
 csrcholInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpDcsrcholSolve[Host](cusolverSpHandle_t handle,
 int n,
 const double *b,
 double *x,
 csrcholInfo[Host]_t info,
 void *pBuffer);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverSpCcsrcholSolve[Host](cusolverSpHandle_t handle,
 int n,
 const cuComplex *b,
 cuComplex *x,
 csrcholInfo[Host]_t info,
 void *pBuffer);

cusolverStatus_t
cusolverSpZcsrcholSolve[Host](cusolverSpHandle_t handle,
 int n,
 const cuDoubleComplex *b,
 cuDoubleComplex *x,
 csrcholInfo[Host]_t info,
 void *pBuffer);

This function solves the linear system by forward and backward substitution.
The user has to complete numerical factorization before calling this function. If
numerical factorization is not done, CUSOLVER_STATUS_INVALID_VALUE is returned.

The numerical factorization must be done before calling this function, otherwise,
CUSOLVER_STATUS_INVALID_VALUE is returned.
Input

cuSolverSP: sparse LAPACK Function Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 177

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.

b device host <type> array of n of right-hand-side
vectors b.

info host host opaque structure for Cholesky
factorization.

pBuffer device host buffer allocated by the
user, the size is returned by
cusolverSpXcsrcholBufferInfo().

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host <type> array of n of solution vectors x.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid calling sequence.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 178

Chapter 7.
CUSOLVERRF: REFACTORIZATION
REFERENCE

This chapter describes API of cuSolverRF, a library for fast refactorization.

7.1. cusolverRfAccessBundledFactors()

cusolverStatus_t
cusolverRfAccessBundledFactors(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* nnzM,
 /* Output (in the device memory) */
 int** Mp,
 int** Mi,
 double** Mx);

This routine allows direct access to the lower L and upper U triangular factors stored in
the cuSolverRF library handle. The factors are compressed into a single matrix M=(L-
I)+U, where the unitary diagonal of L is not stored. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

nnzM host output the number of non-zero elements of
matrix M.

Mp device output the array of offsets corresponding to the
start of each row in the arrays Mi and Mx.
This array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix M. The array
size is n+1.

Mi device output the array of column indices corresponding
to the non-zero elements in the matrix M.
It is assumed that this array is sorted by

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 179

row and by column within each row. The
array size is nnzM.

Mx device output the array of values corresponding to the
non-zero elements in the matrix M. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

7.2. cusolverRfAnalyze()

cusolverStatus_t
cusolverRfAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the LU re-
factorization depending upon the algorithm chosen by the user.

It is assumed that a prior call to the cusolverRfSetup[Host|Device]() was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 180

7.3. cusolverRfSetupDevice()

cusolverStatus_t
cusolverRfSetupDevice(/* Input (in the device memory) */
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA,
 int nnzL,
 int* csrRowPtrL,
 int* csrColIndL,
 double* csrValL,
 int nnzU,
 int* csrRowPtrU,
 int* csrColIndU,
 double* csrValU,
 int* P,
 int* Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the device) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 181

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA device input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input the number of non-zero elements of
matrix L.

csrRowPtrL device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndL and csrValL. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix L. The array size is n+1.

csrColIndL device input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

csrValL device input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

csrRowPtrU device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndU and csrValU. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix U. The array size is n+1.

csrColIndU device input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

csrValU device input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the GLU library.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 182

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

7.4. cusolverRfSetupHost()

cusolverStatus_t
cusolverRfSetupHost(/* Input (in the host memory) */
 int n,
 int nnzA,
 int* h_csrRowPtrA,
 int* h_csrColIndA,
 double* h_csrValA,
 int nnzL,
 int* h_csrRowPtrL,
 int* h_csrColIndL,
 double* h_csrValL,
 int nnzU,
 int* h_csrRowPtrU,
 int* h_csrColIndU,
 double* h_csrValU,
 int* h_P,
 int* h_Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the host) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 183

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

h_csrRowPtrA host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA host input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrValA host input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input the number of non-zero elements of
matrix L.

h_csrRowPtrL host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix L. The array size is
n+1.

h_csrColIndL host input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrValL host input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

h_csrRowPtrU host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndU and h_csrValU. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix U. The array size is
n+1.

h_csrColIndU host input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 184

row and by column within each row. The
array size is nnzU.

h_csrValU host input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input the left permutation (often associated
with pivoting). The array size in n.

h_Q host input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

7.5. cusolverRfCreate()

cusolverStatus_t cusolverRfCreate(cusolverRfHandle_t *handle);

This routine initializes the cuSolverRF library. It allocates required resources and must
be called prior to any other cuSolverRF library routine.

parameter MemSpace In/out Meaning

handle host output the pointer to the cuSolverRF library
handle.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 185

7.6. cusolverRfExtractBundledFactorsHost()

cusolverStatus_t
cusolverRfExtractBundledFactorsHost(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* h_nnzM,
 int** h_Mp,
 int** h_Mi,
 double** h_Mx);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF
library handle into the host memory. The factors are compressed into a single matrix
M=(L-I)+U, where the unitary diagonal of (L) is not stored. It is assumed that a prior
call to the cusolverRfRefactor() was done in order to generate these triangular
factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

h_nnzM host output the number of non-zero elements of
matrix M.

h_Mp host output the array of offsets corresponding to the
start of each row in the arrays h_Mi and
h_Mx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix M. The array
size is n+1.

h_Mi host output the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

h_Mx host output the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 186

7.7. cusolverRfExtractSplitFactorsHost()

cusolverStatus_t
cusolverRfExtractSplitFactorsHost(/* Input */
 cusolverRfHandle_t handle,
 /* Output (in the host memory) */
 int* h_nnzL,
 int** h_Lp,
 int** h_Li,
 double** h_Lx,
 int* h_nnzU,
 int** h_Up,
 int** h_Ui,
 double** h_Ux);

This routine extracts lower (L) and upper (U) triangular factors from the
cuSolverRF library handle into the host memory. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

h_nnzL host output the number of non-zero elements of
matrix L.

h_Lp host output the array of offsets corresponding to the
start of each row in the arrays h_Li and
h_Lx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix L. The array
size is n+1.

h_Li host output the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is h_nnzL.

h_Lx host output the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzL.

h_nnzU host output the number of non-zero elements of
matrix U.

h_Up host output the array of offsets corresponding to the
start of each row in the arrays h_Ui and
h_Ux. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix U. The array
size is n+1.

h_Ui host output the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 187

row and by column within each row. The
array size is h_nnzU.

h_Ux host output the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzU.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

7.8. cusolverRfDestroy()

cusolverStatus_t cusolverRfDestroy(cusolverRfHandle_t handle);

This routine shuts down the cuSolverRF library. It releases acquired resources and must
be called after all the cuSolverRF library routines.

parameter MemSpace In/out Meaning

handle host input the cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.9. cusolverRfGetMatrixFormat()

cusolverStatus_t
cusolverRfGetMatrixFormat(cusolverRfHandle_t handle,
 cusolverRfMatrixFormat_t *format,
 cusolverRfUnitDiagonal_t *diag);

This routine gets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

format host output the enumerated matrix format type.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 188

diag host output the enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.10. cusolverRfGetNumericProperties()

cusolverStatus_t
cusolverRfGetNumericProperties(cusolverRfHandle_t handle,
 double *zero,
 double *boost);

This routine gets the numeric values used for checking for ''zero'' pivot and for boosting
it in the cusolverRfRefactor() and cusolverRfSolve() routines. The numeric
boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host output the value below which zero pivot is
flagged.

boost host output the value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.11. cusolverRfGetNumericBoostReport()

cusolverStatus_t
cusolverRfGetNumericBoostReport(cusolverRfHandle_t handle,
 cusolverRfNumericBoostReport_t *report);

This routine gets the report whether numeric boosting was used in the
cusolverRfRefactor() and cusolverRfSolve() routines.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

report host output the enumerated boosting report type.

Status Returned

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 189

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.12. cusolverRfGetResetValuesFastMode()

cusolverStatus_t
cusolverRfGetResetValuesFastMode(cusolverRfHandle_t handle,
 rfResetValuesFastMode_t *fastMode);

This routine gets the mode used in the cusolverRfResetValues routine.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

fastMode host output the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.13. cusolverRfGet_Algs()

cusolverStatus_t
cusolverRfGet_Algs(cusolverRfHandle_t handle,
 cusolverRfFactorization_t* fact_alg,
 cusolverRfTriangularSolve_t* solve_alg);

This routine gets the algorithm used for the refactorization in cusolverRfRefactor()
and the triangular solve in cusolverRfSolve().

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

alg host output the enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.14. cusolverRfRefactor()

cusolverStatus_t cusolverRfRefactor(cusolverRfHandle_t handle);

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 190

This routine performs the LU re-factorization

exploring the available parallelism on the GPU. It is assumed that a prior call to the
glu_analyze() was done in order to find the available paralellism.

This routine may be called multiple times, once for each of the linear systems

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.

7.15. cusolverRfResetValues()

cusolverStatus_t
cusolverRfResetValues(/* Input (in the device memory) */
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA,
 int* P,
 int* Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not
changed since the last call to the cusolverRfSetup[Host|Device] routine. This
assumption reflects the fact that the sparsity pattern of coefficient matrices as well as
reordering to minimize fill-in and pivoting remain the same in the set of linear systems

This routine may be called multiple times, once for each of the linear systems

parameter MemSpace In/out Meaning

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 191

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA device input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

7.16. cusolverRfSetMatrixFormat()

cusolverStatus_t
cusolverRfSetMatrixFormat(cusolverRfHandle_t handle,
 gluMatrixFormat_t format,
 gluUnitDiagonal_t diag);

This routine sets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines. It may be called once prior to
cusolverRfSetupDevice() and cusolverRfSetupHost() routines.

parameter MemSpace In/out Meaning

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 192

handle host input the handle to the cuSolverRF library.

format host input the enumerated matrix format type.

diag host input the enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an enumerated mode parameter is wrong.

7.17. cusolverRfSetNumericProperties()

cusolverStatus_t
cusolverRfSetNumericProperties(cusolverRfHandle_t handle,
 double zero,
 double boost);

This routine sets the numeric values used for checking for ''zero'' pivot and for boosting
it in the cusolverRfRefactor() and cusolverRfSolve() routines. It may be called
multiple times prior to cusolverRfRefactor() and cusolverRfSolve() routines.
The numeric boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host input the value below which zero pivot is
flagged.

boost host input the value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.18. cusolverRfSetResetValuesFastMode()

cusolverStatus_t
cusolverRfSetResetValuesFastMode(cusolverRfHandle_t handle,
 gluResetValuesFastMode_t fastMode);

This routine sets the mode used in the cusolverRfResetValues routine. The
fast mode requires extra memory and is recommended only if very fast calls
to cusolverRfResetValues() are needed. It may be called once prior to
cusolverRfAnalyze() routine.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 193

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

fastMode host input the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an enumerated mode parameter is wrong.

7.19. cusolverRfSetAlgs()

cusolverStatus_t
cusolverRfSetAlgs(cusolverRfHandle_t handle,
 gluFactorization_t fact_alg,
 gluTriangularSolve_t alg);

This routine sets the algorithm used for the refactorization in cusolverRfRefactor()
and the triangular solve in cusolverRfSolve(). It may be called once prior to
cusolverRfAnalyze() routine.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

alg host input the enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

7.20. cusolverRfSolve()

cusolverStatus_t
cusolverRfSolve(/* Input (in the device memory) */
 cusolverRfHandle_t handle,
 int *P,
 int *Q,
 int nrhs,
 double *Temp,
 int ldt,
 /* Input/Output (in the device memory) */
 double *XF,
 /* Input */
 int ldxf);

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 194

This routine performs the forward and backward solve with the lower and upper
 triangular factors resulting from the LU re-factorization

which is assumed to have been computed by a prior call to the cusolverRfRefactor()
routine.

The routine can solve linear systems with multiple right-hand-sides (rhs),

even though currently only a single rhs is supported.

This routine may be called multiple times, once for each of the linear systems

parameter MemSpace In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary
workspace (of size ldt*nrhs).

ldt host input the leading dimension of dense matrix
Temp (ldt >= n).

XF host in/out the dense matrix that contains the right-
hand-sides F and solutions X (of size
ldxf*nrhs).

ldxf host input the leading dimension of dense matrix XF
(ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 195

7.21. cusolverRfBatchSetupHost()

cusolverStatus_t
cusolverRfBatchSetupHost(/* Input (in the host memory) */
 int batchSize,
 int n,
 int nnzA,
 int* h_csrRowPtrA,
 int* h_csrColIndA,
 double *h_csrValA_array[],
 int nnzL,
 int* h_csrRowPtrL,
 int* h_csrColIndL,
 double *h_csrValL,
 int nnzU,
 int* h_csrRowPtrU,
 int* h_csrColIndU,
 double *h_csrValU,
 int* h_P,
 int* h_Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library for batched
operation. It is called after the call to the cusolverRfCreate() routine, and before any
other batched routines.

The batched operation assumes that the user has the following linear systems

where each matrix in the set has the same sparsity pattern, and quite similar such
that factorization can be done by the same permutation P and Q. In other words, is
a small perturbation of .

This routine accepts as input (on the host) the original matrix A (sparsity pattern and
batched values), the lower (L) and upper (U) triangular factors, as well as the left (P)
and the right (Q) permutations resulting from the full LU factorization of the first (i=1)
linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

Remark 1: the matrices A, L and U must be CSR format and base-0.

Remark 2: to get best performance, batchSize should be multiple of 32 and greater or
equal to 32. The algorithm is memory-bound, once bandwidth limit is reached, there is
no room to improve performance by large batchSize. In practice, batchSize of 32 -

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 196

128 is often enough to obtain good performance, but in some cases larger batchSize
might be beneficial.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

batchSize host input the number of matrices in the batched
mode.

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

h_csrRowPtrA host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA host input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrValA_array host input array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

nnzL host input the number of non-zero elements of
matrix L.

h_csrRowPtrL host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix L. The array size is
n+1.

h_csrColIndL host input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrValL host input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 197

h_csrRowPtrU host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndU and h_csrValU. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix U. The array size is
n+1.

h_csrColIndU host input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

h_csrValU host input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input the left permutation (often associated
with pivoting). The array size in n.

h_Q host input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

7.22. cusolverRfBatchAnalyze()

cusolverStatus_t cusolverRfBatchAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the batched
LU re-factorization.

It is assumed that a prior call to the cusolverRfBatchSetup[Host]() was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

parameter Memory In/out Meaning

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 198

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

7.23. cusolverRfBatchResetValues()

cusolverStatus_t
cusolverRfBatchResetValues(/* Input (in the device memory) */
 int batchSize,
 int n,
 int nnzA,
 int* csrRowPtrA,
 int* csrColIndA,
 double* csrValA_array[],
 int *P,
 int *Q,
 /* Output */
 cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not
changed since the last call to the cusolverRfbatch_setup_host routine.

This assumption reflects the fact that the sparsity pattern of coefficient matrices as
well as reordering to minimize fill-in and pivoting remain the same in the set of linear
systems

The input parameter csrValA_array is an array of pointers on device memory.
csrValA_array(j) points to matrix which is also on device memory.

parameter MemSpace In/out Meaning

batchSize host input the number of matrices in batched mode.

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 199

the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA_array device input array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

7.24. cusolverRfBatchRefactor()

cusolverStatus_t cusolverRfBatchRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization

exploring the available parallelism on the GPU. It is assumed that a prior call to the
cusolverRfBatchAnalyze() was done in order to find the available paralellism.

Remark: cusolverRfBatchRefactor() would not report any failure of LU
refactorization. The user has to call cusolverRfBatchZeroPivot() to know which
matrix failed the LU refactorization.

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 200

7.25. cusolverRfBatchSolve()

cusolverStatus_t
cusolverRfBatchSolve(/* Input (in the device memory) */
 cusolverRfHandle_t handle,
 int *P,
 int *Q,
 int nrhs,
 double *Temp,
 int ldt,
 /* Input/Output (in the device memory) */
 double *XF_array[],
 /* Input */
 int ldxf);

To solve , first we reform the equation by where
. Then do refactorization by cusolverRfBatch_Refactor(). Further
cusolverRfBatch_Solve() takes over the remaining steps, including:

The input parameter XF_array is an array of pointers on device memory. XF_array(j)
points to matrix which is also on device memory.

Remark 1: only a single rhs is supported.

Remark 2: no singularity is reported during backward solve. If some matrix failed
the refactorization and has some zero diagonal, backward solve would compute
NAN. The user has to call cusolverRfBatch_Zero_Pivot to check if refactorization is
successful or not.

parameter Memory In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary
workspace (of size ldt*nrhs).

ldt host input the leading dimension of dense matrix
Temp (ldt >= n).

XF_array host in/out array of pointers of size batchSize,
each pointer points to the dense matrix

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 201

that contains the right-hand-sides F and
solutions X (of size ldxf*nrhs).

ldxf host input the leading dimension of dense matrix XF
(ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

7.26. cusolverRfBatchZeroPivot()

cusolverStatus_t
cusolverRfBatchZeroPivot(/* Input */
 cusolverRfHandle_t handle
 /* Output (in the host memory) */
 int *position);

Although is close to each other, it does not mean exists for every
j. The user can query which matrix failed LU refactorization by checking corresponding
value in position array. The input parameter position is an integer array of size
batchSize.

The j-th component denotes the refactorization result of matrix . If position(j) is
-1, the LU refactorization of matrix is successful. If position(j) is k >= 0, matrix
is not LU factorizable and its matrix is zero.

The return value of cusolverRfBatch_Zero_Pivot is
CUSOLVER_STATUS_ZERO_PIVOT if there exists one which failed LU refactorization.
The user can redo LU factorization to get new permutation P and Q if error code
CUSOLVER_STATUS_ZERO_PIVOT is returned.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

position host output integer array of size batchSize. The
value of position(j) reports singularity
of matrix Aj, -1 if no structural/
numerical zero, k >= 0 if Aj(k,k) is
either structural zero or numerical zero.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

cuSolverRF: Refactorization Reference

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 202

CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 203

Appendix A.
CUSOLVERRF EXAMPLES

A.1. cuSolverRF In-memory Example
This is an example in the C programming language of how to use the standard routines
in the cuSolverRF library. We focus on solving the set of linear systems

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 204

but we change the indexing from one- to zero-based to follow the C programming
language. The example begins with the usual includes and main()

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include "cusolverRf.h"

#define TEST_PASSED 0
#define TEST_FAILED 1

int main (void){
 /* matrix A */
 int n;
 int nnzA;
 int *Ap=NULL;
 int *Ai=NULL;
 double *Ax=NULL;
 int *d_Ap=NULL;
 int *d_Ai=NULL;
 double *d_rAx=NULL;
 /* matrices L and U */
 int nnzL, nnzU;
 int *Lp=NULL;
 int *Li=NULL;
 double* Lx=NULL;
 int *Up=NULL;
 int *Ui=NULL;
 double* Ux=NULL;
 /* reordering matrices */
 int *P=NULL;
 int *Q=NULL;
 int * d_P=NULL;
 int * d_Q=NULL;
 /* solution and rhs */
 int nrhs; //# of rhs for each system (currently only =1 is supported)
 double *d_X=NULL;
 double *d_T=NULL;
 /* cuda */
 cudaError_t cudaStatus;
 /* cuolverRf */
 cusolverRfHandle_t gH=NULL;
 cusolverStatus_t status;
 /* host sparse direct solver */
 /* ... */
 /* other variables */
 int tnnzL, tnnzU;
 int *tLp=NULL;
 int *tLi=NULL;
 double *tLx=NULL;
 int *tUp=NULL;
 int *tUi=NULL;
 double *tUx=NULL;
 double t1, t2;

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 205

Then we initialize the library.

 /* ASSUMPTION: recall that we are solving a set of linear systems
 A_{i} x_{i} = f_{i} for i=0,...,k-1
 where the sparsity pattern of the coefficient matrices A_{i}
 as well as the reordering to minimize fill-in and the pivoting
 used during the LU factorization remain the same. */

 /* Step 1: solve the first linear system (i=0) on the host,
 using host sparse direct solver, which involves
 full LU factorization and solve. */
 /* ... */

 /* Step 2: interface to the library by extracting the following
 information from the first solve:
 a) triangular factors L and U
 b) pivoting and reordering permutations P and Q
 c) also, allocate all the necessary memory */
 /* ... */

 /* Step 3: use the library to solve subsequent (i=1,...,k-1) linear systems
 a) the library setup (called only once) */
 //create handle
 status = cusolverRfCreate(&gH);
 if (status != CUSOLVER_STATUS_SUCCESS){
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }

 //set fast mode
 status = cusolverRfSetResetValuesFastMode(gH,GLU_RESET_VALUES_FAST_MODE_ON);
 if (status != CUSOLVER_STATUS_SUCCESS){
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 206

Call refactorization and solve.

 //assemble internal data structures (you should use the coeffcient matrix A
 //corresponding to the second (i=1) linear system in this call)
 t1 = cusolver_test_seconds();
 status = cusolverRfSetupHost(n, nnzA, Ap, Ai, Ax,
 nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q, gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfSetupHost time = \%f (s)\n", t2-t1);

 //analyze available parallelism
 t1 = cusolver_test_seconds();
 status = cusolverRfAnalyze(gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfAnalyze time = \%f (s)\n", t2-t1);

 /* b) The library subsequent (i=1,...,k-1) LU re-factorization
 and solve (called multiple times). */
 for (i=1; i<k; i++){
 //LU re-factorization
 t1 = cusolver_test_seconds();
 status = cusolverRfRefactor(gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
 printf ("[cusolverRF status \%d]\n",status);
 return TEST_FAILED;
 }
 printf("cuSolverReRefactor time = \%f (s)\n", t2-t1);

 //forward and backward solve
 t1 = cusolver_test_seconds();
 status = cusolverRfSolve(gH, d_P, d_Q, nrhs, d_T, n, d_X, n);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfSolve time = \%f (s)\n", t2-t1);

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 207

Extract the results and return.

 // extract the factors (if needed)
 status = cusolverRfExtractSplitFactorsHost(gH, &tnnzL, &tLp, &tLi,
 &tLx,
 &tnnzU, &tUp, &tUi, &tUx);
 if(status != CUSOLVER_STATUS_SUCCESS){
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }
 /*
 //print
 int row, j;
 printf("printing L\n");
 for (row=0; row<n; row++){
 for (j=tLp[row]; j<tLp[row+1]; j++){
 printf("\%d,\%d,\%f\n",row,tLi[j],tLx[j]);
 }
 }
 printf("printing U\n");
 for (row=0; row<n; row++){
 for (j=tUp[row]; j<tUp[row+1]; j++){
 printf("\%d,\%d,\%f\n",row,tUi[j],tUx[j]);
 }
 }
 */

 /* perform any other operations based on the solution */
 /* ... */

 /* check if done */
 /* ... */

 /* proceed to solve the next linear system */
 // update the coefficient matrix using reset values
 // (assuming that the new linear system, in other words,
 // new values are already on the GPU in the array d_rAx)
 t1 = cusolver_test_seconds();
 status = cusolverRfResetValues(n,nnzA,d_Ap,d_Ai,d_rAx,d_P,d_Q,gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
 printf ("[cusolverRf status \%d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfResetValues time = \%f (s)\n", t2-t1);
 }

 /* free memory and exit */
 /* ... */
 return TEST_PASSED;
}

A.2. cuSolverRF-batch Example
This chapter provides an example in the C programming language of how to use the
batched routines in the cuSolverRF library. We focus on solving the set of linear systems

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 208

but we change the indexing from one- to zero-based to follow the C programming
language. The first part is the usual includes and main definition

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include "cusolverRf.h"

#define TEST_PASSED 0
#define TEST_FAILED 1

int main (void){
 /* matrix A */
 int batchSize;
 int n;
 int nnzA;
 int *Ap=NULL;
 int *Ai=NULL;
 //array of pointers to the values of each matrix in the batch (of size
 //batchSize) on the host
 double **Ax_array=NULL;
 //For example, if Ax_batch is the array (of size batchSize*nnzA) containing
 //the values of each matrix in the batch written contiguosly one matrix
 //after another on the host, then Ax_array[j] = &Ax_batch[nnzA*j];
 //for j=0,...,batchSize-1.
 double *Ax_batch=NULL;
 int *d_Ap=NULL;
 int *d_Ai=NULL;
 //array of pointers to the values of each matrix in the batch (of size
 //batchSize) on the device
 double **d_Ax_array=NULL;
 //For example, if d_Ax_batch is the array (of size batchSize*nnzA)
 containing
 //the values of each matrix in the batch written contiguosly one matrix
 //after another on the device, then d_Ax_array[j] = &d_Ax_batch[nnzA*j];
 //for j=0,...,batchSize-1.
 double *d_Ax_batch=NULL;
 /* matrices L and U */
 int nnzL, nnzU;
 int *Lp=NULL;
 int *Li=NULL;
 double* Lx=NULL;
 int *Up=NULL;
 int *Ui=NULL;
 double* Ux=NULL;
 /* reordering matrices */
 int *P=NULL;
 int *Q=NULL;
 int *d_P=NULL;
 int *d_Q=NULL;

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 209

Next we initialize the data needed and the create library handles

 /* solution and rhs */
 int nrhs; //# of rhs for each system (currently only =1 is supported)
 //temporary storage (of size 2*batchSize*n*nrhs)
 double *d_T=NULL;
 //array (of size batchSize*n*nrhs) containing the values of each rhs in
 //the batch written contiguously one rhs after another on the device
 double **d_X_array=NULL;
 //array (of size batchSize*n*nrhs) containing the values of each rhs in
 //the batch written contiguously one rhs after another on the host
 double **X_array=NULL;
 /* cuda */
 cudaError_t cudaStatus;
 /* cusolverRf */
 cusolverRfHandle_t gH=NULL;
 cusolverStatus_t status;
 /* host sparse direct solver */
 ...
 /* other variables */
 double t1, t2;

 /* ASSUMPTION:
 recall that we are solving a batch of linear systems
 A_{j} x_{j} = f_{j} for j=0,...,batchSize-1
 where the sparsity pattern of the coefficient matrices A_{j}
 as well as the reordering to minimize fill-in and the pivoting
 used during the LU factorization remain the same. */

 /* Step 1: solve the first linear system (j=0) on the host,
 using host sparse direct solver, which involves
 full LU factorization and solve. */
 /* ... */

 /* Step 2: interface to the library by extracting the following
 information from the first solve:
 a) triangular factors L and U
 b) pivoting and reordering permutations P and Q
 c) also, allocate all the necessary memory */
 /* ... */

 /* Step 3: use the library to solve the remaining (j=1,...,batchSize-1)
 linear systems.
 a) the library setup (called only once) */
 //create handle
 status = cusolverRfcreate(&gH);
 if (status != CUSOLVER_STATUS_SUCCESS){
 printf ("[cusolverRf status %d]\n",status);
 return TEST_FAILED;
 }

cuSolverRF Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 210

We call the batch solve method and return.

 //assemble internal data structures
 t1 = cusolver_test_seconds();
 status = cusolverRfBatchSetupHost(batchSize, n, nnzA, Ap, Ai, Ax_array,
 nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q,
 gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status %d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfBatchSetupHost time = %f (s)\n", t2-t1);

 //analyze available parallelism
 t1 = cusolver_test_seconds();
 status = cusolverRfBatchAnalyze(gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status %d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfBatchAnalyze time = %f (s)\n", t2-t1);

 /* b) The library subsequent (j=1,...,batchSize-1) LU re-factorization
 and solve (may be called multiple times). For the subsequent batches
 the values can be reset using cusolverRfBatch_reset_values_routine. */
 //LU re-factorization
 t1 = cusolver_test_seconds();
 status = cusolverRfBatchRefactor(gH);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status %d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfBatchRefactor time = %f (s)\n", t2-t1);

 //forward and backward solve
 t1 = cusolver_test_seconds();
 status = cusolverRfBatchSolve(gH, d_P, d_Q, nrhs, d_T, n, d_X_array, n);
 cudaStatus = cudaDeviceSynchronize();
 t2 = cusolver_test_seconds();
 if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
 printf ("[cusolverRf status %d]\n",status);
 return TEST_FAILED;
 }
 printf("cusolverRfBatchSolve time = %f (s)\n", t2-t1);

 /* free memory and exit */
 /* ... */
 return TEST_PASSED;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 211

Appendix B.
CSR QR BATCH EXAMPLES

B.1. Batched Sparse QR example 1
This chapter provides a simple example in the C programming language of how to use
batched sparse QR to solver a set of linear systems

All matrices are small perturbations of

All right-hand side vectors are small perturbation of the Matlab vector 'ones(4,1)'.

We assume device memory is big enough to compute all matrices in one pass.

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 212

The usual includes and main definition

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cusolverSp.h>
#include <cuda_runtime_api.h>

int main(int argc, char*argv[])
{
 cusolverSpHandle_t cusolverH = NULL;
// GPU does batch QR
 csrqrInfo_t info = NULL;
 cusparseMatDescr_t descrA = NULL;

 cusparseStatus_t cusparse_status = CUSPARSE_STATUS_SUCCESS;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 cudaError_t cudaStat5 = cudaSuccess;

// GPU does batch QR
// d_A is CSR format, d_csrValA is of size nnzA*batchSize
// d_x is a matrix of size batchSize * m
// d_b is a matrix of size batchSize * m
 int *d_csrRowPtrA = NULL;
 int *d_csrColIndA = NULL;
 double *d_csrValA = NULL;
 double *d_b = NULL; // batchSize * m
 double *d_x = NULL; // batchSize * m

 size_t size_qr = 0;
 size_t size_internal = 0;
 void *buffer_qr = NULL; // working space for numerical factorization

/* | 1 |
 * A = | 2 |
 * | 3 |
 * | 0.1 0.1 0.1 4 |
 * CSR of A is based-1
 *
 * b = [1 1 1 1]
 */

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 213

Set up the library handle and data

 const int m = 4 ;
 const int nnzA = 7;
 const int csrRowPtrA[m+1] = { 1, 2, 3, 4, 8};
 const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};
 const double csrValA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
 const double b[m] = {1.0, 1.0, 1.0, 1.0};
 const int batchSize = 17;

 double *csrValABatch = (double*)malloc(sizeof(double)*nnzA*batchSize);
 double *bBatch = (double*)malloc(sizeof(double)*m*batchSize);
 double *xBatch = (double*)malloc(sizeof(double)*m*batchSize);
 assert(NULL != csrValABatch);
 assert(NULL != bBatch);
 assert(NULL != xBatch);

// step 1: prepare Aj and bj on host
// Aj is a small perturbation of A
// bj is a small perturbation of b
// csrValABatch = [A0, A1, A2, ...]
// bBatch = [b0, b1, b2, ...]
 for(int colidx = 0 ; colidx < nnzA ; colidx++){
 double Areg = csrValA[colidx];
 for (int batchId = 0 ; batchId < batchSize ; batchId++){
 double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
 csrValABatch[batchId*nnzA + colidx] = Areg + eps;
 }
 }

 for(int j = 0 ; j < m ; j++){
 double breg = b[j];
 for (int batchId = 0 ; batchId < batchSize ; batchId++){
 double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
 bBatch[batchId*m + j] = breg + eps;
 }
 }

// step 2: create cusolver handle, qr info and matrix descriptor
 cusolver_status = cusolverSpCreate(&cusolverH);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

 cusparse_status = cusparseCreateMatDescr(&descrA);
 assert(cusparse_status == CUSPARSE_STATUS_SUCCESS);

 cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
 cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // base-1

 cusolver_status = cusolverSpCreateCsrqrInfo(&info);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 214

Call the solver

// step 3: copy Aj and bj to device
 cudaStat1 = cudaMalloc ((void**)&d_csrValA , sizeof(double) * nnzA *
 batchSize);
 cudaStat2 = cudaMalloc ((void**)&d_csrColIndA, sizeof(int) * nnzA);
 cudaStat3 = cudaMalloc ((void**)&d_csrRowPtrA, sizeof(int) * (m+1));
 cudaStat4 = cudaMalloc ((void**)&d_b , sizeof(double) * m *
 batchSize);
 cudaStat5 = cudaMalloc ((void**)&d_x , sizeof(double) * m *
 batchSize);
 assert(cudaStat1 == cudaSuccess);
 assert(cudaStat2 == cudaSuccess);
 assert(cudaStat3 == cudaSuccess);
 assert(cudaStat4 == cudaSuccess);
 assert(cudaStat5 == cudaSuccess);

 cudaStat1 = cudaMemcpy(d_csrValA , csrValABatch, sizeof(double) * nnzA *
 batchSize, cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_csrColIndA, csrColIndA, sizeof(int) * nnzA,
 cudaMemcpyHostToDevice);
 cudaStat3 = cudaMemcpy(d_csrRowPtrA, csrRowPtrA, sizeof(int) * (m+1),
 cudaMemcpyHostToDevice);
 cudaStat4 = cudaMemcpy(d_b, bBatch, sizeof(double) * m * batchSize,
 cudaMemcpyHostToDevice);
 assert(cudaStat1 == cudaSuccess);
 assert(cudaStat2 == cudaSuccess);
 assert(cudaStat3 == cudaSuccess);
 assert(cudaStat4 == cudaSuccess);

// step 4: symbolic analysis
 cusolver_status = cusolverSpXcsrqrAnalysisBatched(
 cusolverH, m, m, nnzA,
 descrA, d_csrRowPtrA, d_csrColIndA,
 info);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 5: prepare working space
 cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
 cusolverH, m, m, nnzA,
 descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
 batchSize,
 info,
 &size_internal,
 &size_qr);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

 printf("numerical factorization needs internal data %lld bytes\n",
 (long long)size_internal);
 printf("numerical factorization needs working space %lld bytes\n",
 (long long)size_qr);

 cudaStat1 = cudaMalloc((void**)&buffer_qr, size_qr);
 assert(cudaStat1 == cudaSuccess);

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 215

Get results back

// step 6: numerical factorization
// assume device memory is big enough to compute all matrices.
 cusolver_status = cusolverSpDcsrqrsvBatched(
 cusolverH, m, m, nnzA,
 descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
 d_b, d_x,
 batchSize,
 info,
 buffer_qr);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 7: check residual
// xBatch = [x0, x1, x2, ...]
 cudaStat1 = cudaMemcpy(xBatch, d_x, sizeof(double)*m*batchSize,
 cudaMemcpyDeviceToHost);
 assert(cudaStat1 == cudaSuccess);

 const int baseA = (CUSPARSE_INDEX_BASE_ONE ==
 cusparseGetMatIndexBase(descrA))? 1:0 ;

 for(int batchId = 0 ; batchId < batchSize; batchId++){
 // measure |bj - Aj*xj|
 double *csrValAj = csrValABatch + batchId * nnzA;
 double *xj = xBatch + batchId * m;
 double *bj = bBatch + batchId * m;
 // sup| bj - Aj*xj|
 double sup_res = 0;
 for(int row = 0 ; row < m ; row++){
 const int start = csrRowPtrA[row] - baseA;
 const int end = csrRowPtrA[row+1] - baseA;
 double Ax = 0.0; // Aj(row,:)*xj
 for(int colidx = start ; colidx < end ; colidx++){
 const int col = csrColIndA[colidx] - baseA;
 const double Areg = csrValAj[colidx];
 const double xreg = xj[col];
 Ax = Ax + Areg * xreg;
 }
 double r = bj[row] - Ax;
 sup_res = (sup_res > fabs(r))? sup_res : fabs(r);
 }
 printf("batchId %d: sup|bj - Aj*xj| = %E \n", batchId, sup_res);
 }

 for(int batchId = 0 ; batchId < batchSize; batchId++){
 double *xj = xBatch + batchId * m;
 for(int row = 0 ; row < m ; row++){
 printf("x%d[%d] = %E\n", batchId, row, xj[row]);
 }
 printf("\n");
 }

 return 0;
}

B.2. Batched Sparse QR example 2
This is the same as example 1 in appendix C except that we assume device memory is
not enough, so we need to cut 17 matrices into several chunks and compute each chunk
by batched sparse QR.

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 216

The usual includes and main definitions

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cusolverSp.h>
#include <cuda_runtime_api.h>

#define imin(x, y) ((x)<(y))? (x) : (y)

int main(int argc, char*argv[])
{
 cusolverSpHandle_t cusolverH = NULL;
// GPU does batch QR
 csrqrInfo_t info = NULL;
 cusparseMatDescr_t descrA = NULL;

 cusparseStatus_t cusparse_status = CUSPARSE_STATUS_SUCCESS;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 cudaError_t cudaStat5 = cudaSuccess;

// GPU does batch QR
// d_A is CSR format, d_csrValA is of size nnzA*batchSize
// d_x is a matrix of size batchSize * m
// d_b is a matrix of size batchSize * m
 int *d_csrRowPtrA = NULL;
 int *d_csrColIndA = NULL;
 double *d_csrValA = NULL;
 double *d_b = NULL; // batchSize * m
 double *d_x = NULL; // batchSize * m

 size_t size_qr = 0;
 size_t size_internal = 0;
 void *buffer_qr = NULL; // working space for numerical factorization

/* | 1 |
 * A = | 2 |
 * | 3 |
 * | 0.1 0.1 0.1 4 |
 * CSR of A is based-1
 *
 * b = [1 1 1 1]
 */

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 217

Create the library handle

 const int m = 4 ;
 const int nnzA = 7;
 const int csrRowPtrA[m+1] = { 1, 2, 3, 4, 8};
 const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};
 const double csrValA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
 const double b[m] = {1.0, 1.0, 1.0, 1.0};
 const int batchSize = 17;

 double *csrValABatch = (double*)malloc(sizeof(double)*nnzA*batchSize);
 double *bBatch = (double*)malloc(sizeof(double)*m*batchSize);
 double *xBatch = (double*)malloc(sizeof(double)*m*batchSize);
 assert(NULL != csrValABatch);
 assert(NULL != bBatch);
 assert(NULL != xBatch);

// step 1: prepare Aj and bj on host
// Aj is a small perturbation of A
// bj is a small perturbation of b
// csrValABatch = [A0, A1, A2, ...]
// bBatch = [b0, b1, b2, ...]
 for(int colidx = 0 ; colidx < nnzA ; colidx++){
 double Areg = csrValA[colidx];
 for (int batchId = 0 ; batchId < batchSize ; batchId++){
 double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
 csrValABatch[batchId*nnzA + colidx] = Areg + eps;
 }
 }

 for(int j = 0 ; j < m ; j++){
 double breg = b[j];
 for (int batchId = 0 ; batchId < batchSize ; batchId++){
 double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
 bBatch[batchId*m + j] = breg + eps;
 }
 }

// step 2: create cusolver handle, qr info and matrix descriptor
 cusolver_status = cusolverSpCreate(&cusolverH);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

 cusparse_status = cusparseCreateMatDescr(&descrA);
 assert(cusparse_status == CUSPARSE_STATUS_SUCCESS);

 cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
 cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // base-1

 cusolver_status = cusolverSpCreateCsrqrInfo(&info);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 218

Set up the data

// step 3: copy Aj and bj to device
 cudaStat1 = cudaMalloc ((void**)&d_csrValA , sizeof(double) * nnzA *
 batchSize);
 cudaStat2 = cudaMalloc ((void**)&d_csrColIndA, sizeof(int) * nnzA);
 cudaStat3 = cudaMalloc ((void**)&d_csrRowPtrA, sizeof(int) * (m+1));
 cudaStat4 = cudaMalloc ((void**)&d_b , sizeof(double) * m *
 batchSize);
 cudaStat5 = cudaMalloc ((void**)&d_x , sizeof(double) * m *
 batchSize);
 assert(cudaStat1 == cudaSuccess);
 assert(cudaStat2 == cudaSuccess);
 assert(cudaStat3 == cudaSuccess);
 assert(cudaStat4 == cudaSuccess);
 assert(cudaStat5 == cudaSuccess);

// don't copy csrValABatch and bBatch because device memory may be big enough
 cudaStat1 = cudaMemcpy(d_csrColIndA, csrColIndA, sizeof(int) * nnzA,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_csrRowPtrA, csrRowPtrA, sizeof(int) * (m+1),
 cudaMemcpyHostToDevice);
 assert(cudaStat1 == cudaSuccess);
 assert(cudaStat2 == cudaSuccess);

// step 4: symbolic analysis
 cusolver_status = cusolverSpXcsrqrAnalysisBatched(
 cusolverH, m, m, nnzA,
 descrA, d_csrRowPtrA, d_csrColIndA,
 info);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 5: find "proper" batchSize
 // get available device memory
 size_t free_mem = 0;
 size_t total_mem = 0;
 cudaStat1 = cudaMemGetInfo(&free_mem, &total_mem);
 assert(cudaSuccess == cudaStat1);

 int batchSizeMax = 2;
 while(batchSizeMax < batchSize){
 printf("batchSizeMax = %d\n", batchSizeMax);
 cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
 cusolverH, m, m, nnzA,
 // d_csrValA is don't care
 descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
 batchSizeMax, // WARNING: use batchSizeMax
 info,
 &size_internal,
 &size_qr);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

 if ((size_internal + size_qr) > free_mem){
 // current batchSizeMax exceeds hardware limit, so cut it by half.
 batchSizeMax /= 2; break;
 }
 batchSizeMax *= 2; // double batchSizMax and try it again.
 }
 // correct batchSizeMax such that it is not greater than batchSize.
 batchSizeMax = imin(batchSizeMax, batchSize);
 printf("batchSizeMax = %d\n", batchSizeMax);

// Assume device memory is not big enough, and batchSizeMax = 2
 batchSizeMax = 2;

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 219

Perform analysis and call solve

// step 6: prepare working space
// [necessary]
// Need to call cusolverDcsrqrBufferInfoBatched again with batchSizeMax
// to fix batchSize used in numerical factorization.
 cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
 cusolverH, m, m, nnzA,
 // d_csrValA is don't care
 descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
 batchSizeMax, // WARNING: use batchSizeMax
 info,
 &size_internal,
 &size_qr);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

 printf("numerical factorization needs internal data %lld bytes\n",
 (long long)size_internal);
 printf("numerical factorization needs working space %lld bytes\n",
 (long long)size_qr);

 cudaStat1 = cudaMalloc((void**)&buffer_qr, size_qr);
 assert(cudaStat1 == cudaSuccess);

// step 7: solve Aj*xj = bj
 for(int idx = 0 ; idx < batchSize; idx += batchSizeMax){
 // current batchSize 'cur_batchSize' is the batchSize used in numerical
 factorization
 const int cur_batchSize = imin(batchSizeMax, batchSize - idx);
 printf("current batchSize = %d\n", cur_batchSize);
 // copy part of Aj and bj to device
 cudaStat1 = cudaMemcpy(d_csrValA, csrValABatch + idx*nnzA,
 sizeof(double) * nnzA * cur_batchSize, cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_b, bBatch + idx*m,
 sizeof(double) * m * cur_batchSize, cudaMemcpyHostToDevice);
 assert(cudaStat1 == cudaSuccess);
 assert(cudaStat2 == cudaSuccess);
 // solve part of Aj*xj = bj
 cusolver_status = cusolverSpDcsrqrsvBatched(
 cusolverH, m, m, nnzA,
 descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
 d_b, d_x,
 cur_batchSize, // WARNING: use current batchSize
 info,
 buffer_qr);
 assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);
 // copy part of xj back to host
 cudaStat1 = cudaMemcpy(xBatch + idx*m, d_x,
 sizeof(double) * m * cur_batchSize, cudaMemcpyDeviceToHost);
 assert(cudaStat1 == cudaSuccess);
 }

CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 220

Check results

// step 7: check residual
// xBatch = [x0, x1, x2, ...]
 const int baseA = (CUSPARSE_INDEX_BASE_ONE ==
 cusparseGetMatIndexBase(descrA))? 1:0 ;

 for(int batchId = 0 ; batchId < batchSize; batchId++){
 // measure |bj - Aj*xj|
 double *csrValAj = csrValABatch + batchId * nnzA;
 double *xj = xBatch + batchId * m;
 double *bj = bBatch + batchId * m;
 // sup| bj - Aj*xj|
 double sup_res = 0;
 for(int row = 0 ; row < m ; row++){
 const int start = csrRowPtrA[row] - baseA;
 const int end = csrRowPtrA[row+1] - baseA;
 double Ax = 0.0; // Aj(row,:)*xj
 for(int colidx = start ; colidx < end ; colidx++){
 const int col = csrColIndA[colidx] - baseA;
 const double Areg = csrValAj[colidx];
 const double xreg = xj[col];
 Ax = Ax + Areg * xreg;
 }
 double r = bj[row] - Ax;
 sup_res = (sup_res > fabs(r))? sup_res : fabs(r);
 }
 printf("batchId %d: sup|bj - Aj*xj| = %E \n", batchId, sup_res);
 }

 for(int batchId = 0 ; batchId < batchSize; batchId++){
 double *xj = xBatch + batchId * m;
 for(int row = 0 ; row < m ; row++){
 printf("x%d[%d] = %E\n", batchId, row, xj[row]);
 }
 printf("\n");
 }

 return 0;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 221

Appendix C.
QR EXAMPLES

C.1. QR Factorization Dense Linear Solver
This chapter provides a simple example in the C programming language of how to use a
dense QR factorization to solve a linear system

A is a 3x3 dense matrix, nonsingular.

The following code uses three steps:

Step 1: A = Q*R by geqrf.

Step 2: B := Q^T*B by ormqr.

Step 3: solve R*X = B by trsm.

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 222

The usual includes and main definition

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include ormqr_example.cpp
 * nvcc -o -fopenmp a.out ormqr_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cuda_runtime.h>

#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cublasHandle_t cublasH = NULL;
 cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3;
 const int lda = m;
 const int ldb = m;
 const int nrhs = 1; // number of right hand side vectors
/* | 1 2 3 |
 * A = | 4 5 6 |
 * | 2 1 1 |
 *
 * x = (1 1 1)'
 * b = (6 15 4)'
 */

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 223

Create the library handle and load the data

 double A[lda*m] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0, 3.0, 6.0, 1.0};
// double X[ldb*nrhs] = { 1.0, 1.0, 1.0}; // exact solution
 double B[ldb*nrhs] = { 6.0, 15.0, 4.0};
 double XC[ldb*nrhs]; // solution matrix from GPU

 double *d_A = NULL; // linear memory of GPU
 double *d_tau = NULL; // linear memory of GPU
 double *d_B = NULL;
 int *devInfo = NULL; // info in gpu (device copy)
 double *d_work = NULL;
 int lwork = 0;

 int info_gpu = 0;

 const double one = 1;

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");
 printf("B = (matlab base-1)\n");
 printMatrix(m, nrhs, B, ldb, "B");
 printf("=====\n");

// step 1: create cusolver/cublas handle
 cusolver_status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

 cublas_status = cublasCreate(&cublasH);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

// step 2: copy A and B to device
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_tau, sizeof(double) * m);
 cudaStat3 = cudaMalloc ((void**)&d_B , sizeof(double) * ldb * nrhs);
 cudaStat4 = cudaMalloc ((void**)&devInfo, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m ,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * ldb * nrhs,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 224

Call the solver

// step 3: query working space of geqrf and ormqr
 cusolver_status = cusolverDnDgeqrf_bufferSize(
 cusolverH,
 m,
 m,
 d_A,
 lda,
 &lwork);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

// step 4: compute QR factorization
 cusolver_status = cusolverDnDgeqrf(
 cusolverH,
 m,
 m,
 d_A,
 lda,
 d_tau,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

 // check if QR is good or not
 cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("after geqrf: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

// step 5: compute Q^T*B
 cusolver_status= cusolverDnDormqr(
 cusolverH,
 CUBLAS_SIDE_LEFT,
 CUBLAS_OP_T,
 m,
 nrhs,
 m,
 d_A,
 lda,
 d_tau,
 d_B,
 ldb,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 225

Check the results

 // check if QR is good or not
 cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("after ormqr: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

// step 6: compute x = R \ Q^T*B

 cublas_status = cublasDtrsm(
 cublasH,
 CUBLAS_SIDE_LEFT,
 CUBLAS_FILL_MODE_UPPER,
 CUBLAS_OP_N,
 CUBLAS_DIAG_NON_UNIT,
 m,
 nrhs,
 &one,
 d_A,
 lda,
 d_B,
 ldb);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(XC, d_B, sizeof(double)*ldb*nrhs,
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("X = (matlab base-1)\n");
 printMatrix(m, nrhs, XC, ldb, "X");

// free resources
 if (d_A) cudaFree(d_A);
 if (d_tau) cudaFree(d_tau);
 if (d_B) cudaFree(d_B);
 if (devInfo) cudaFree(devInfo);
 if (d_work) cudaFree(d_work);

 if (cublasH) cublasDestroy(cublasH);
 if (cusolverH) cusolverDnDestroy(cusolverH);

 cudaDeviceReset();

 return 0;
}

C.2. orthogonalization
This chapter provides a simple example in the C programming language of how to do
orthgonalization by QR factorization.

A is a 3x2 dense matrix,

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 226

The following code uses three steps:

Step 1: A = Q*R by geqrf.

Step 2: form Q by orgqr.

Step 3: check if Q is unitary or not.

The usual includes and main definition

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include orgqr_example.cpp
 * g++ -fopenmp -o a.out orgqr_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <cuda_runtime.h>

#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cublasHandle_t cublasH = NULL;
 cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3;
 const int n = 2;
 const int lda = m;
/* | 1 2 |
 * A = | 4 5 |
 * | 2 1 |
 */

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 227

Create the library handle and load the data

 double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
 double Q[lda*n]; // orthonormal columns
 double R[n*n]; // R = I - Q**T*Q

 double *d_A = NULL;
 double *d_tau = NULL;
 int *devInfo = NULL;
 double *d_work = NULL;

 double *d_R = NULL;

 int lwork_geqrf = 0;
 int lwork_orgqr = 0;
 int lwork = 0;

 int info_gpu = 0;

 const double h_one = 1;
 const double h_minus_one = -1;

 printf("A = (matlab base-1)\n");
 printMatrix(m, n, A, lda, "A");
 printf("=====\n");

// step 1: create cusolverDn/cublas handle
 cusolver_status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

 cublas_status = cublasCreate(&cublasH);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

// step 2: copy A and B to device
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double)*lda*n);
 cudaStat2 = cudaMalloc ((void**)&d_tau, sizeof(double)*n);
 cudaStat3 = cudaMalloc ((void**)&devInfo, sizeof(int));
 cudaStat4 = cudaMalloc ((void**)&d_R , sizeof(double)*n*n);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 228

Call the solver

// step 3: query working space of geqrf and orgqr
 cusolver_status = cusolverDnDgeqrf_bufferSize(
 cusolverH,
 m,
 n,
 d_A,
 lda,
 &lwork_geqrf);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
 cusolver_status = cusolverDnDorgqr_bufferSize(
 cusolverH,
 m,
 n,
 n,
 d_A,
 lda,
 &lwork_orgqr);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
// lwork = max(lwork_geqrf, lwork_orgqr)
 lwork = (lwork_geqrf > lwork_orgqr)? lwork_geqrf : lwork_orgqr;

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

// step 4: compute QR factorization
 cusolver_status = cusolverDnDgeqrf(
 cusolverH,
 m,
 n,
 d_A,
 lda,
 d_tau,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

 // check if QR is successful or not
 cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("after geqrf: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

// step 5: compute Q
 cusolver_status= cusolverDnDorgqr(
 cusolverH,
 m,
 n,
 n,
 d_A,
 lda,
 d_tau,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 229

Check the results

 // check if QR is good or not
 cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("after orgqr: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

 cudaStat1 = cudaMemcpy(Q, d_A, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("Q = (matlab base-1)\n");
 printMatrix(m, n, Q, lda, "Q");

// step 6: measure R = I - Q**T*Q
 memset(R, 0, sizeof(double)*n*n);
 for(int j = 0 ; j < n ; j++){
 R[j + n*j] = 1.0; // R(j,j)=1
 }

 cudaStat1 = cudaMemcpy(d_R, R, sizeof(double)*n*n, cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

 // R = -Q**T*Q + I
 cublas_status = cublasDgemm_v2(
 cublasH,
 CUBLAS_OP_T, // Q**T
 CUBLAS_OP_N, // Q
 n, // number of rows of R
 n, // number of columns of R
 m, // number of columns of Q**T
 &h_minus_one, /* host pointer */
 d_A, // Q**T
 lda,
 d_A, // Q
 lda,
 &h_one, /* hostpointer */
 d_R,
 n);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

 double dR_nrm2 = 0.0;
 cublas_status = cublasDnrm2_v2(
 cublasH, n*n, d_R, 1, &dR_nrm2);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

 printf("|I - Q**T*Q| = %E\n", dR_nrm2);

QR Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 230

free resources

// free resources
 if (d_A) cudaFree(d_A);
 if (d_tau) cudaFree(d_tau);
 if (devInfo) cudaFree(devInfo);
 if (d_work) cudaFree(d_work);
 if (d_R) cudaFree(d_R);

 if (cublasH) cublasDestroy(cublasH);
 if (cusolverH) cusolverDnDestroy(cusolverH);

 cudaDeviceReset();

 return 0;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 231

Appendix D.
LU EXAMPLES

D.1. LU Factorization
This chapter provides a simple example in the C programming language of how to use a
dense LU factorization to solve a linear system

A is a 3x3 dense matrix, nonsingular.

The code uses getrf to do LU factorization and getrs to do backward and forward solve.
The parameter pivot_on decides whether partial pivoting is performed or not.

LU Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 232

...

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include getrf_example.cpp
 * g++ -fopenmp -o a.out getrf_example.o -L/usr/local/cuda/lib64 -lcusolver -
lcudart
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;

 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3;
 const int lda = m;
 const int ldb = m;
/* | 1 2 3 |
 * A = | 4 5 6 |
 * | 7 8 10 |
 *
 * without pivoting: A = L*U
 * | 1 0 0 | | 1 2 3 |
 * L = | 4 1 0 |, U = | 0 -3 -6 |
 * | 7 2 1 | | 0 0 1 |
 *
 * with pivoting: P*A = L*U
 * | 0 0 1 |
 * P = | 1 0 0 |
 * | 0 1 0 |
 *
 * | 1 0 0 | | 7 8 10 |
 * L = | 0.1429 1 0 |, U = | 0 0.8571 1.5714 |
 * | 0.5714 0.5 1 | | 0 0 -0.5 |
 */

LU Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 233

...

 double A[lda*m] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 10.0};
 double B[m] = { 1.0, 2.0, 3.0 };
 double X[m]; /* X = A\B */
 double LU[lda*m]; /* L and U */
 int Ipiv[m]; /* host copy of pivoting sequence */
 int info = 0; /* host copy of error info */

 double *d_A = NULL; /* device copy of A */
 double *d_B = NULL; /* device copy of B */
 int *d_Ipiv = NULL; /* pivoting sequence */
 int *d_info = NULL; /* error info */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* device workspace for getrf */

 const int pivot_on = 0;

 printf("example of getrf \n");

 if (pivot_on){
 printf("pivot is on : compute P*A = L*U \n");
 }else{
 printf("pivot is off: compute A = L*U (not numerically stable)\n");
 }

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");

 printf("B = (matlab base-1)\n");
 printMatrix(m, 1, B, ldb, "B");
 printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: copy A to device */
 cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * m);
 cudaStat2 = cudaMalloc ((void**)&d_Ipiv, sizeof(int) * m);
 cudaStat4 = cudaMalloc ((void**)&d_info, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*m,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_B, B, sizeof(double)*m, cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

LU Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 234

...

/* step 3: query working space of getrf */
 status = cusolverDnDgetrf_bufferSize(
 cusolverH,
 m,
 m,
 d_A,
 lda,
 &lwork);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

/* step 4: LU factorization */
 if (pivot_on){
 status = cusolverDnDgetrf(
 cusolverH,
 m,
 m,
 d_A,
 lda,
 d_work,
 d_Ipiv,
 d_info);
 }else{
 status = cusolverDnDgetrf(
 cusolverH,
 m,
 m,
 d_A,
 lda,
 d_work,
 NULL,
 d_info);
 }
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 if (pivot_on){
 cudaStat1 = cudaMemcpy(Ipiv , d_Ipiv, sizeof(int)*m,
 cudaMemcpyDeviceToHost);
 }
 cudaStat2 = cudaMemcpy(LU , d_A , sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 if (0 > info){
 printf("%d-th parameter is wrong \n", -info);
 exit(1);
 }
 if (pivot_on){
 printf("pivoting sequence, matlab base-1\n");
 for(int j = 0 ; j < m ; j++){
 printf("Ipiv(%d) = %d\n", j+1, Ipiv[j]);
 }
 }
 printf("L and U = (matlab base-1)\n");
 printMatrix(m, m, LU, lda, "LU");
 printf("=====\n");

LU Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 235

...

/*
 * step 5: solve A*X = B
 * | 1 | | -0.3333 |
 * B = | 2 |, X = | 0.6667 |
 * | 3 | | 0 |
 *
 */
 if (pivot_on){
 status = cusolverDnDgetrs(
 cusolverH,
 CUBLAS_OP_N,
 m,
 1, /* nrhs */
 d_A,
 lda,
 d_Ipiv,
 d_B,
 ldb,
 d_info);
 }else{
 status = cusolverDnDgetrs(
 cusolverH,
 CUBLAS_OP_N,
 m,
 1, /* nrhs */
 d_A,
 lda,
 NULL,
 d_B,
 ldb,
 d_info);
 }
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(X , d_B, sizeof(double)*m, cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);

 printf("X = (matlab base-1)\n");
 printMatrix(m, 1, X, ldb, "X");
 printf("=====\n");

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_B) cudaFree(d_B);
 if (d_Ipiv) cudaFree(d_Ipiv);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);

 cudaDeviceReset();

 return 0;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 236

Appendix E.
EXAMPLES OF DENSE EIGENVALUE SOLVER

E.1. Standard Symmetric Dense Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
syevd to compute the spectrum of a dense symmetric system by

where A is a 3x3 dense symmetric matrix

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 237

The following code uses syevd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {2,3,4}.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include syevd_example.cpp
 * g++ -o -fopenmp a.out syevd_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 const int m = 3;
 const int lda = m;
/* | 3.5 0.5 0 |
 * A = | 0.5 3.5 0 |
 * | 0 0 2 |
 *
 */
 double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
 double lambda[m] = { 2.0, 3.0, 4.0};

 double V[lda*m]; // eigenvectors
 double W[m]; // eigenvalues

 double *d_A = NULL;
 double *d_W = NULL;
 int *devInfo = NULL;
 double *d_work = NULL;
 int lwork = 0;

 int info_gpu = 0;

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 238

call eigenvalue solver

// step 1: create cusolver/cublas handle
 cusolver_status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
 cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
 cudaStat3 = cudaMalloc ((void**)&devInfo, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

// step 3: query working space of syevd
 cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
 cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
 cusolver_status = cusolverDnDsyevd_bufferSize(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 &lwork);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum
 cusolver_status = cusolverDnDsyevd(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 239

check the result

 printf("after syevd: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

 printf("eigenvalue = (matlab base-1), ascending order\n");
 for(int i = 0 ; i < m ; i++){
 printf("W[%d] = %E\n", i+1, W[i]);
 }

 printf("V = (matlab base-1)\n");
 printMatrix(m, m, V, lda, "V");
 printf("=====\n");

// step 4: check eigenvalues
 double lambda_sup = 0;
 for(int i = 0 ; i < m ; i++){
 double error = fabs(lambda[i] - W[i]);
 lambda_sup = (lambda_sup > error)? lambda_sup : error;
 }
 printf("|lambda - W| = %E\n", lambda_sup);

// free resources
 if (d_A) cudaFree(d_A);
 if (d_W) cudaFree(d_W);
 if (devInfo) cudaFree(devInfo);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);

 cudaDeviceReset();

 return 0;
}

E.2. Generalized Symmetric-Definite Dense
Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
sygvd to compute spectrum of a pair of dense symmetric matrices (A,B) by

where A is a 3x3 dense symmetric matrix

and B is a 3x3 positive definite matrix

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 240

The following code uses sygvd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {0.158660256604, 0.370751508101882, 0.6}.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include sygvd_example.cpp
 * g++ -o -fopenmp a.out sygvd_example.o -L/usr/local/cuda/lib64 -lcublas -
lcusolver
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3;
 const int lda = m;
/*
 * | 3.5 0.5 0 |
 * A = | 0.5 3.5 0 |
 * | 0 0 2 |
 *
 * | 10 2 3 |
 * B = | 2 10 5 |
 * | 3 5 10 |
 */
 double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
 double B[lda*m] = { 10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
 double lambda[m] = { 0.158660256604, 0.370751508101882, 0.6};

 double V[lda*m]; // eigenvectors
 double W[m]; // eigenvalues

 double *d_A = NULL;
 double *d_B = NULL;
 double *d_W = NULL;
 int *devInfo = NULL;
 double *d_work = NULL;
 int lwork = 0;
 int info_gpu = 0;

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");

 printf("B = (matlab base-1)\n");
 printMatrix(m, m, B, lda, "B");
 printf("=====\n");

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 241

call eigenvalue solver

// step 1: create cusolver/cublas handle
 cusolver_status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
 cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * lda * m);
 cudaStat3 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
 cudaStat4 = cudaMalloc ((void**)&devInfo, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

// step 3: query working space of sygvd
 cusolverEigType_t itype = CUSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
 cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
 cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
 cusolver_status = cusolverDnDsygvd_bufferSize(
 cusolverH,
 itype,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_B,
 lda,
 d_W,
 &lwork);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum of (A,B)
 cusolver_status = cusolverDnDsygvd(
 cusolverH,
 itype,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_B,
 lda,
 d_W,
 d_work,
 lwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 242

check the result

 cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 printf("after sygvd: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);

 printf("eigenvalue = (matlab base-1), ascending order\n");
 for(int i = 0 ; i < m ; i++){
 printf("W[%d] = %E\n", i+1, W[i]);
 }

 printf("V = (matlab base-1)\n");
 printMatrix(m, m, V, lda, "V");
 printf("=====\n");

// step 4: check eigenvalues
 double lambda_sup = 0;
 for(int i = 0 ; i < m ; i++){
 double error = fabs(lambda[i] - W[i]);
 lambda_sup = (lambda_sup > error)? lambda_sup : error;
 }
 printf("|lambda - W| = %E\n", lambda_sup);

// free resources
 if (d_A) cudaFree(d_A);
 if (d_B) cudaFree(d_B);
 if (d_W) cudaFree(d_W);
 if (devInfo) cudaFree(devInfo);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);

 cudaDeviceReset();

 return 0;
}

E.3. Standard Symmetric Dense Eigenvalue Solver
(via Jacobi method)
This chapter provides a simple example in the C programming language of how to use
syevj to compute the spectrum of a dense symmetric system by

where A is a 3x3 dense symmetric matrix

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 243

The following code uses syevj to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {2,3,4}.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include syevj_example.cpp
 * g++ -fopenmp -o syevj_example syevj_example.o -L/usr/local/cuda/lib64 -
lcusolver -lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;
 syevjInfo_t syevj_params = NULL;

 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 const int m = 3;
 const int lda = m;
/* | 3.5 0.5 0 |
 * A = | 0.5 3.5 0 |
 * | 0 0 2 |
 *
 */
 double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
 double lambda[m] = { 2.0, 3.0, 4.0};

 double V[lda*m]; /* eigenvectors */
 double W[m]; /* eigenvalues */

 double *d_A = NULL; /* device copy of A */
 double *d_W = NULL; /* eigenvalues */
 int *d_info = NULL; /* error info */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* device workspace for syevj */
 int info = 0; /* host copy of error info */

/* configuration of syevj */
 const double tol = 1.e-7;
 const int max_sweeps = 15;
 const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
 const cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 244

configure parameters of syevj

/* numerical results of syevj */
 double residual = 0;
 int executed_sweeps = 0;

 printf("example of syevj \n");
 printf("tol = %E, default value is machine zero \n", tol);
 printf("max. sweeps = %d, default value is 100\n", max_sweeps);

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
 status = cusolverDnCreateSyevjInfo(&syevj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
 status = cusolverDnXsyevjSetTolerance(
 syevj_params,
 tol);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
 status = cusolverDnXsyevjSetMaxSweeps(
 syevj_params,
 max_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
 cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
 cudaStat3 = cudaMalloc ((void**)&d_info, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*m,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 245

call eigenvalue solver

/* step 4: query working space of syevj */
 status = cusolverDnDsyevj_bufferSize(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 &lwork,
 syevj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

/* step 5: compute eigen-pair */
 status = cusolverDnDsyevj(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 d_work,
 lwork,
 d_info,
 syevj_params);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 if (0 == info){
 printf("syevj converges \n");
 }else if (0 > info){
 printf("%d-th parameter is wrong \n", -info);
 exit(1);
 }else{
 printf("WARNING: info = %d : syevj does not converge \n", info);
 }

 printf("Eigenvalue = (matlab base-1), ascending order\n");
 for(int i = 0 ; i < m ; i++){
 printf("W[%d] = %E\n", i+1, W[i]);
 }

 printf("V = (matlab base-1)\n");
 printMatrix(m, m, V, lda, "V");
 printf("=====\n");

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 246

check the result

/* step 6: check eigenvalues */
 double lambda_sup = 0;
 for(int i = 0 ; i < m ; i++){
 double error = fabs(lambda[i] - W[i]);
 lambda_sup = (lambda_sup > error)? lambda_sup : error;
 }
 printf("|lambda - W| = %E\n", lambda_sup);

 status = cusolverDnXsyevjGetSweeps(
 cusolverH,
 syevj_params,
 &executed_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 status = cusolverDnXsyevjGetResidual(
 cusolverH,
 syevj_params,
 &residual);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 printf("residual |A - V*W*V**H|_F = %E \n", residual);
 printf("number of executed sweeps = %d \n", executed_sweeps);

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_W) cudaFree(d_W);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);
 if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

 cudaDeviceReset();

 return 0;
}

E.4. Generalized Symmetric-Definite Dense
Eigenvalue Solver (via Jacobi method)
This chapter provides a simple example in the C programming language of how to use
sygvj to compute spectrum of a pair of dense symmetric matrices (A,B) by

where A is a 3x3 dense symmetric matrix

and B is a 3x3 positive definite matrix

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 247

The following code uses sygvj to compute eigenvalues and eigenvectors.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include sygvj_example.cpp
 * g++ -fopenmp -o sygvj_example sygvj_example.o -L/usr/local/cuda/lib64 -
lcusolver -lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;
 syevjInfo_t syevj_params = NULL;
 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3;
 const int lda = m;
/*
 * | 3.5 0.5 0 |
 * A = | 0.5 3.5 0 |
 * | 0 0 2 |
 *
 * | 10 2 3 |
 * B = | 2 10 5 |
 * | 3 5 10 |
 */
 double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
 double B[lda*m] = { 10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
 double lambda[m] = { 0.158660256604, 0.370751508101882, 0.6};

 double V[lda*m]; /* eigenvectors */
 double W[m]; /* eigenvalues */

 double *d_A = NULL; /* device copy of A */
 double *d_B = NULL; /* device copy of B */
 double *d_W = NULL; /* numerical eigenvalue */
 int *d_info = NULL; /* error info */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* device workspace for sygvj */
 int info = 0; /* host copy of error info */

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 248

configure parameters of Jacobi method

/* configuration of sygvj */
 const double tol = 1.e-7;
 const int max_sweeps = 15;
 const cusolverEigType_t itype = CUSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
 const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
 const cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;

/* numerical results of syevj */
 double residual = 0;
 int executed_sweeps = 0;

 printf("example of sygvj \n");
 printf("tol = %E, default value is machine zero \n", tol);
 printf("max. sweeps = %d, default value is 100\n", max_sweeps);

 printf("A = (matlab base-1)\n");
 printMatrix(m, m, A, lda, "A");
 printf("=====\n");

 printf("B = (matlab base-1)\n");
 printMatrix(m, m, B, lda, "B");
 printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
 status = cusolverDnCreateSyevjInfo(&syevj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
 status = cusolverDnXsyevjSetTolerance(
 syevj_params,
 tol);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
 status = cusolverDnXsyevjSetMaxSweeps(
 syevj_params,
 max_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 249

call eigenvalue solver

/* step 3: copy A and B to device */
 cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
 cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * lda * m);
 cudaStat3 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
 cudaStat4 = cudaMalloc ((void**)&d_info, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

/* step 4: query working space of sygvj */
 status = cusolverDnDsygvj_bufferSize(
 cusolverH,
 itype,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_B,
 lda, /* ldb */
 d_W,
 &lwork,
 syevj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

/* step 5: compute spectrum of (A,B) */
 status = cusolverDnDsygvj(
 cusolverH,
 itype,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_B,
 lda, /* ldb */
 d_W,
 d_work,
 lwork,
 d_info,
 syevj_params);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 250

check the result

 if (0 == info){
 printf("sygvj converges \n");
 }else if (0 > info){
 printf("Error: %d-th parameter is wrong \n", -info);
 exit(1);
 }else if (m >= info){
 printf("Error: leading minor of order %d of B is not positive definite
\n", -info);
 exit(1);
 }else { /* info = m+1 */
 printf("WARNING: info = %d : sygvj does not converge \n", info);
 }

 printf("Eigenvalue = (matlab base-1), ascending order\n");
 for(int i = 0 ; i < m ; i++){
 printf("W[%d] = %E\n", i+1, W[i]);
 }

 printf("V = (matlab base-1)\n");
 printMatrix(m, m, V, lda, "V");
 printf("=====\n");

/* step 6: check eigenvalues */
 double lambda_sup = 0;
 for(int i = 0 ; i < m ; i++){
 double error = fabs(lambda[i] - W[i]);
 lambda_sup = (lambda_sup > error)? lambda_sup : error;
 }
 printf("|lambda - W| = %E\n", lambda_sup);

 status = cusolverDnXsyevjGetSweeps(
 cusolverH,
 syevj_params,
 &executed_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 status = cusolverDnXsyevjGetResidual(
 cusolverH,
 syevj_params,
 &residual);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 printf("residual |M - V*W*V**H|_F = %E \n", residual);
 printf("number of executed sweeps = %d \n", executed_sweeps);

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_B) cudaFree(d_B);
 if (d_W) cudaFree(d_W);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);
 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);
 if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

 cudaDeviceReset();
 return 0;
}

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 251

E.5. batch eigenvalue solver for dense symmetric
matrix
This chapter provides a simple example in the C programming language of how to use
syevjBatched to compute the spectrum of a sequence of dense symmetric matrices by

where A0 and A1 are 3x3 dense symmetric matrices

The following code uses syevjBatched to compute eigenvalues and eigenvectors

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 252

The user can disable/enable sorting by the function cusolverDnXsyevjSetSortEig.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include batchsyevj_example.cpp
 * g++ -fopenmp -o batchsyevj_example batchsyevj_example.o -L/usr/local/cuda/
lib64 -lcusolver -lcudart
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;
 syevjInfo_t syevj_params = NULL;

 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 const int m = 3; // 1<= m <= 32
 const int lda = m;
 const int batchSize = 2;
/*
 * | 1 -1 0 |
 * A0 = | -1 2 0 |
 * | 0 0 0 |
 *
 * A0 = V0 * W0 * V0**T
 *
 * W0 = diag(0, 0.3820, 2.6180)
 *
 * | 3 4 0 |
 * A1 = | 4 7 0 |
 * | 0 0 0 |
 *
 * A1 = V1 * W1 * V1**T
 *
 * W1 = diag(0, 0.5279, 9.4721)
 *
 */

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 253

setup matrices A0 and A1

 double A[lda*m*batchSize]; /* A = [A0 ; A1] */
 double V[lda*m*batchSize]; /* V = [V0 ; V1] */
 double W[m*batchSize]; /* W = [W0 ; W1] */
 int info[batchSize]; /* info = [info0 ; info1] */

 double *d_A = NULL; /* lda-by-m-by-batchSize */
 double *d_W = NULL; /* m-by-batchSizee */
 int* d_info = NULL; /* batchSize */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* device workspace for syevjBatched */

 const double tol = 1.e-7;
 const int max_sweeps = 15;
 const int sort_eig = 0; /* don't sort eigenvalues */
 const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute
 eigenvectors */
 const cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;

/* residual and executed_sweeps are not supported on syevjBatched */
 double residual = 0;
 int executed_sweeps = 0;

 double *A0 = A;
 double *A1 = A + lda*m;
/*
 * | 1 -1 0 |
 * A0 = | -1 2 0 |
 * | 0 0 0 |
 * A0 is column-major
 */
 A0[0 + 0*lda] = 1.0;
 A0[1 + 0*lda] = -1.0;
 A0[2 + 0*lda] = 0.0;

 A0[0 + 1*lda] = -1.0;
 A0[1 + 1*lda] = 2.0;
 A0[2 + 1*lda] = 0.0;

 A0[0 + 2*lda] = 0.0;
 A0[1 + 2*lda] = 0.0;
 A0[2 + 2*lda] = 0.0;
/*
 * | 3 4 0 |
 * A1 = | 4 7 0 |
 * | 0 0 0 |
 * A1 is column-major
 */
 A1[0 + 0*lda] = 3.0;
 A1[1 + 0*lda] = 4.0;
 A1[2 + 0*lda] = 0.0;

 A1[0 + 1*lda] = 4.0;
 A1[1 + 1*lda] = 7.0;
 A1[2 + 1*lda] = 0.0;

 A1[0 + 2*lda] = 0.0;
 A1[1 + 2*lda] = 0.0;
 A1[2 + 2*lda] = 0.0;

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 254

configure parameters of syevj

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
 status = cusolverDnCreateSyevjInfo(&syevj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
 status = cusolverDnXsyevjSetTolerance(
 syevj_params,
 tol);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
 status = cusolverDnXsyevjSetMaxSweeps(
 syevj_params,
 max_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* disable sorting */
 status = cusolverDnXsyevjSetSortEig(
 syevj_params,
 sort_eig);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double) * lda * m *
 batchSize);
 cudaStat2 = cudaMalloc ((void**)&d_W , sizeof(double) * m * batchSize);
 cudaStat3 = cudaMalloc ((void**)&d_info, sizeof(int) * batchSize);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m * batchSize,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaDeviceSynchronize();
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

/* step 4: query working space of syevjBatched */
 status = cusolverDnDsyevjBatched_bufferSize(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 &lwork,
 syevj_params,
 batchSize
);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 255

call eigenvalue solver

/* step 5: compute spectrum of A0 and A1 */
 status = cusolverDnDsyevjBatched(
 cusolverH,
 jobz,
 uplo,
 m,
 d_A,
 lda,
 d_W,
 d_work,
 lwork,
 d_info,
 syevj_params,
 batchSize
);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(V , d_A , sizeof(double) * lda * m * batchSize,
 cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(W , d_W , sizeof(double) * m * batchSize ,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int) * batchSize ,
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);

 for(int i = 0 ; i < batchSize ; i++){
 if (0 == info[i]){
 printf("matrix %d: syevj converges \n", i);
 }else if (0 > info[i]){
/* only info[0] shows if some input parameter is wrong.
 * If so, the error is CUSOLVER_STATUS_INVALID_VALUE.
 */
 printf("Error: %d-th parameter is wrong \n", -info[i]);
 exit(1);
 }else { /* info = m+1 */
/* if info[i] is not zero, Jacobi method does not converge at i-th matrix. */
 printf("WARNING: matrix %d, info = %d : sygvj does not converge \n",
 i, info[i]);
 }
 }

/* Step 6: show eigenvalues and eigenvectors */
 double *W0 = W;
 double *W1 = W + m;
 printf("==== \n");
 for(int i = 0 ; i < m ; i++){
 printf("W0[%d] = %f\n", i, W0[i]);
 }
 printf("==== \n");
 for(int i = 0 ; i < m ; i++){
 printf("W1[%d] = %f\n", i, W1[i]);
 }
 printf("==== \n");

 double *V0 = V;
 double *V1 = V + lda*m;
 printf("V0 = (matlab base-1)\n");
 printMatrix(m, m, V0, lda, "V0");
 printf("V1 = (matlab base-1)\n");
 printMatrix(m, m, V1, lda, "V1");

Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 256

cannot query residual and executed sweeps.

/*
 * The folowing two functions do not support batched version.
 * The error CUSOLVER_STATUS_NOT_SUPPORTED is returned.
 */
 status = cusolverDnXsyevjGetSweeps(
 cusolverH,
 syevj_params,
 &executed_sweeps);
 assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

 status = cusolverDnXsyevjGetResidual(
 cusolverH,
 syevj_params,
 &residual);
 assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_W) cudaFree(d_W);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);
 if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

 cudaDeviceReset();

 return 0;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 257

Appendix F.
EXAMPLES OF SINGULAR VALUE
DECOMPOSITION

F.1. SVD with singular vectors
This chapter provides a simple example in the C programming language of how to
singular value decomposition.

A is a 3x2 dense matrix,

The following code uses three steps:

Step 1: compute A = U*S*VT

Step 2: check accuracy of singular value

Step 3: measure residual A-U*S*VT

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 258

...

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include svd_example.cpp
 * g++ -fopenmp -o a.out svd_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cublasHandle_t cublasH = NULL;
 cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
 cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 cudaError_t cudaStat5 = cudaSuccess;
 cudaError_t cudaStat6 = cudaSuccess;
 const int m = 3;
 const int n = 2;
 const int lda = m;
/* | 1 2 |
 * A = | 4 5 |
 * | 2 1 |
 */
 double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
 double U[lda*m]; // m-by-m unitary matrix
 double VT[lda*n]; // n-by-n unitary matrix
 double S[n]; // singular value
 double S_exact[n] = {7.065283497082729, 1.040081297712078};

 double *d_A = NULL;
 double *d_S = NULL;
 double *d_U = NULL;
 double *d_VT = NULL;
 int *devInfo = NULL;
 double *d_work = NULL;
 double *d_rwork = NULL;
 double *d_W = NULL; // W = S*VT

 int lwork = 0;
 int info_gpu = 0;
 const double h_one = 1;
 const double h_minus_one = -1;

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 259

...

 printf("A = (matlab base-1)\n");
 printMatrix(m, n, A, lda, "A");
 printf("=====\n");

// step 1: create cusolverDn/cublas handle
 cusolver_status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

 cublas_status = cublasCreate(&cublasH);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

// step 2: copy A and B to device
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double)*lda*n);
 cudaStat2 = cudaMalloc ((void**)&d_S , sizeof(double)*n);
 cudaStat3 = cudaMalloc ((void**)&d_U , sizeof(double)*lda*m);
 cudaStat4 = cudaMalloc ((void**)&d_VT , sizeof(double)*lda*n);
 cudaStat5 = cudaMalloc ((void**)&devInfo, sizeof(int));
 cudaStat6 = cudaMalloc ((void**)&d_W , sizeof(double)*lda*n);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);
 assert(cudaSuccess == cudaStat5);
 assert(cudaSuccess == cudaStat6);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

// step 3: query working space of SVD
 cusolver_status = cusolverDnDgesvd_bufferSize(
 cusolverH,
 m,
 n,
 &lwork);
 assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

 cudaStat1 = cudaMalloc((void**)&d_work , sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

// step 4: compute SVD
 signed char jobu = 'A'; // all m columns of U
 signed char jobvt = 'A'; // all n columns of VT
 cusolver_status = cusolverDnDgesvd (
 cusolverH,
 jobu,
 jobvt,
 m,
 n,
 d_A,
 lda,
 d_S,
 d_U,
 lda, // ldu
 d_VT,
 lda, // ldvt,
 d_work,
 lwork,
 d_rwork,
 devInfo);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
 assert(cudaSuccess == cudaStat1);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 260

...

 cudaStat1 = cudaMemcpy(U , d_U , sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(VT, d_VT, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(S , d_S , sizeof(double)*n ,
 cudaMemcpyDeviceToHost);
 cudaStat4 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

 printf("after gesvd: info_gpu = %d\n", info_gpu);
 assert(0 == info_gpu);
 printf("=====\n");

 printf("S = (matlab base-1)\n");
 printMatrix(n, 1, S, lda, "S");
 printf("=====\n");

 printf("U = (matlab base-1)\n");
 printMatrix(m, m, U, lda, "U");
 printf("=====\n");

 printf("VT = (matlab base-1)\n");
 printMatrix(n, n, VT, lda, "VT");
 printf("=====\n");

// step 5: measure error of singular value
 double ds_sup = 0;
 for(int j = 0; j < n; j++){
 double err = fabs(S[j] - S_exact[j]);
 ds_sup = (ds_sup > err)? ds_sup : err;
 }
 printf("|S - S_exact| = %E \n", ds_sup);

// step 6: |A - U*S*VT|
 // W = S*VT
 cublas_status = cublasDdgmm(
 cublasH,
 CUBLAS_SIDE_LEFT,
 n,
 n,
 d_VT,
 lda,
 d_S,
 1,
 d_W,
 lda);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 261

...

 // A := -U*W + A
 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);
 cublas_status = cublasDgemm_v2(
 cublasH,
 CUBLAS_OP_N, // U
 CUBLAS_OP_N, // W
 m, // number of rows of A
 n, // number of columns of A
 n, // number of columns of U
 &h_minus_one, /* host pointer */
 d_U, // U
 lda,
 d_W, // W
 lda,
 &h_one, /* hostpointer */
 d_A,
 lda);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

 double dR_fro = 0.0;
 cublas_status = cublasDnrm2_v2(
 cublasH, lda*n, d_A, 1, &dR_fro);
 assert(CUBLAS_STATUS_SUCCESS == cublas_status);

 printf("|A - U*S*VT| = %E \n", dR_fro);

// free resources
 if (d_A) cudaFree(d_A);
 if (d_S) cudaFree(d_S);
 if (d_U) cudaFree(d_U);
 if (d_VT) cudaFree(d_VT);
 if (devInfo) cudaFree(devInfo);
 if (d_work) cudaFree(d_work);
 if (d_rwork) cudaFree(d_rwork);
 if (d_W) cudaFree(d_W);

 if (cublasH) cublasDestroy(cublasH);
 if (cusolverH) cusolverDnDestroy(cusolverH);

 cudaDeviceReset();

 return 0;
}

F.2. SVD with singular vectors (via Jacobi method)
This chapter provides a simple example in the C programming language of how to
singular value decomposition by gesvdj.

A is a 3x2 dense matrix,

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 262

...

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include gesvdj_example.cpp
 * g++ -fopenmp -o gesvdj_example gesvdj_example.o -L/usr/local/cuda/lib64 -
lcudart -lcublas -lcusolver
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %20.16E\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;
 gesvdjInfo_t gesvdj_params = NULL;

 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 cudaError_t cudaStat5 = cudaSuccess;
 const int m = 3;
 const int n = 2;
 const int lda = m;
/* | 1 2 |
 * A = | 4 5 |
 * | 2 1 |
 */
 double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
 double U[lda*m]; /* m-by-m unitary matrix, left singular vectors */
 double V[lda*n]; /* n-by-n unitary matrix, right singular vectors */
 double S[n]; /* numerical singular value */
/* exact singular values */
 double S_exact[n] = {7.065283497082729, 1.040081297712078};
 double *d_A = NULL; /* device copy of A */
 double *d_S = NULL; /* singular values */
 double *d_U = NULL; /* left singular vectors */
 double *d_V = NULL; /* right singular vectors */
 int *d_info = NULL; /* error info */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* devie workspace for gesvdj */
 int info = 0; /* host copy of error info */

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 263

...

/* configuration of gesvdj */
 const double tol = 1.e-7;
 const int max_sweeps = 15;
 const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
 const int econ = 0 ; /* econ = 1 for economy size */

/* numerical results of gesvdj */
 double residual = 0;
 int executed_sweeps = 0;

 printf("example of gesvdj \n");
 printf("tol = %E, default value is machine zero \n", tol);
 printf("max. sweeps = %d, default value is 100\n", max_sweeps);
 printf("econ = %d \n", econ);

 printf("A = (matlab base-1)\n");
 printMatrix(m, n, A, lda, "A");
 printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of gesvdj */
 status = cusolverDnCreateGesvdjInfo(&gesvdj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
 status = cusolverDnXgesvdjSetTolerance(
 gesvdj_params,
 tol);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
 status = cusolverDnXgesvdjSetMaxSweeps(
 gesvdj_params,
 max_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A and B to device */
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double)*lda*n);
 cudaStat2 = cudaMalloc ((void**)&d_S , sizeof(double)*n);
 cudaStat3 = cudaMalloc ((void**)&d_U , sizeof(double)*lda*m);
 cudaStat4 = cudaMalloc ((void**)&d_V , sizeof(double)*lda*n);
 cudaStat5 = cudaMalloc ((void**)&d_info, sizeof(int));
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);
 assert(cudaSuccess == cudaStat5);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
 assert(cudaSuccess == cudaStat1);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 264

...

/* step 4: query workspace of SVD */
 status = cusolverDnDgesvdj_bufferSize(
 cusolverH,
 jobz, /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
 /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
 econ, /* econ = 1 for economy size */
 m, /* nubmer of rows of A, 0 <= m */
 n, /* number of columns of A, 0 <= n */
 d_A, /* m-by-n */
 lda, /* leading dimension of A */
 d_S, /* min(m,n) */
 /* the singular values in descending order */
 d_U, /* m-by-m if econ = 0 */
 /* m-by-min(m,n) if econ = 1 */
 lda, /* leading dimension of U, ldu >= max(1,m) */
 d_V, /* n-by-n if econ = 0 */
 /* n-by-min(m,n) if econ = 1 */
 lda, /* leading dimension of V, ldv >= max(1,n) */
 &lwork,
 gesvdj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work , sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

/* step 5: compute SVD */
 status = cusolverDnDgesvdj(
 cusolverH,
 jobz, /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
 /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
 econ, /* econ = 1 for economy size */
 m, /* nubmer of rows of A, 0 <= m */
 n, /* number of columns of A, 0 <= n */
 d_A, /* m-by-n */
 lda, /* leading dimension of A */
 d_S, /* min(m,n) */
 /* the singular values in descending order */
 d_U, /* m-by-m if econ = 0 */
 /* m-by-min(m,n) if econ = 1 */
 lda, /* leading dimension of U, ldu >= max(1,m) */
 d_V, /* n-by-n if econ = 0 */
 /* n-by-min(m,n) if econ = 1 */
 lda, /* leading dimension of V, ldv >= max(1,n) */
 d_work,
 lwork,
 d_info,
 gesvdj_params);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(U, d_U, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V, d_V, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(S, d_S, sizeof(double)*n ,
 cudaMemcpyDeviceToHost);
 cudaStat4 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
 cudaStat5 = cudaDeviceSynchronize();
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);
 assert(cudaSuccess == cudaStat5);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 265

...

 if (0 == info){
 printf("gesvdj converges \n");
 }else if (0 > info){
 printf("%d-th parameter is wrong \n", -info);
 exit(1);
 }else{
 printf("WARNING: info = %d : gesvdj does not converge \n", info);
 }

 printf("S = singular values (matlab base-1)\n");
 printMatrix(n, 1, S, lda, "S");
 printf("=====\n");

 printf("U = left singular vectors (matlab base-1)\n");
 printMatrix(m, m, U, lda, "U");
 printf("=====\n");

 printf("V = right singular vectors (matlab base-1)\n");
 printMatrix(n, n, V, lda, "V");
 printf("=====\n");

/* step 6: measure error of singular value */
 double ds_sup = 0;
 for(int j = 0; j < n; j++){
 double err = fabs(S[j] - S_exact[j]);
 ds_sup = (ds_sup > err)? ds_sup : err;
 }
 printf("|S - S_exact|_sup = %E \n", ds_sup);

 status = cusolverDnXgesvdjGetSweeps(
 cusolverH,
 gesvdj_params,
 &executed_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 status = cusolverDnXgesvdjGetResidual(
 cusolverH,
 gesvdj_params,
 &residual);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 printf("residual |A - U*S*V**H|_F = %E \n", residual);
 printf("number of executed sweeps = %d \n", executed_sweeps);

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_S) cudaFree(d_S);
 if (d_U) cudaFree(d_U);
 if (d_V) cudaFree(d_V);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);
 if (gesvdj_params) cusolverDnDestroyGesvdjInfo(gesvdj_params);

 cudaDeviceReset();
 return 0;
}

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 266

F.3. batch dense SVD solver
This chapter provides a simple example in the C programming language of how to use
gesvdjBatched to compute the SVD of a sequence of dense matrices

where A0 and A1 are 3x2 dense matrices

The following code uses gesvdjBatched to compute singular values and singular
vectors.

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 267

The user can disable/enable sorting by the function cusolverDnXgesvdjSetSortEig.

/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 * nvcc -c -I/usr/local/cuda/include gesvdjbatch_example.cpp
 * g++ -fopenmp -o gesvdjbatch_example gesvdjbatch_example.o -L/usr/local/
cuda/lib64 -lcusolver -lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
 for(int row = 0 ; row < m ; row++){
 for(int col = 0 ; col < n ; col++){
 double Areg = A[row + col*lda];
 printf("%s(%d,%d) = %20.16E\n", name, row+1, col+1, Areg);
 }
 }
}

int main(int argc, char*argv[])
{
 cusolverDnHandle_t cusolverH = NULL;
 cudaStream_t stream = NULL;
 gesvdjInfo_t gesvdj_params = NULL;

 cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
 cudaError_t cudaStat1 = cudaSuccess;
 cudaError_t cudaStat2 = cudaSuccess;
 cudaError_t cudaStat3 = cudaSuccess;
 cudaError_t cudaStat4 = cudaSuccess;
 cudaError_t cudaStat5 = cudaSuccess;
 const int m = 3; /* 1 <= m <= 32 */
 const int n = 2; /* 1 <= n <= 32 */
 const int lda = m; /* lda >= m */
 const int ldu = m; /* ldu >= m */
 const int ldv = n; /* ldv >= n */
 const int batchSize = 2;
 const int minmn = (m < n)? m : n; /* min(m,n) */
/*
 * | 1 -1 |
 * A0 = | -1 2 |
 * | 0 0 |
 *
 * A0 = U0 * S0 * V0**T
 * S0 = diag(2.6180, 0.382)
 *
 * | 3 4 |
 * A1 = | 4 7 |
 * | 0 0 |
 *
 * A1 = U1 * S1 * V1**T
 * S1 = diag(9.4721, 0.5279)
 */

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 268

setup matrices A0 and A1

 double A[lda*n*batchSize]; /* A = [A0 ; A1] */
 double U[ldu*m*batchSize]; /* U = [U0 ; U1] */
 double V[ldv*n*batchSize]; /* V = [V0 ; V1] */
 double S[minmn*batchSize]; /* S = [S0 ; S1] */
 int info[batchSize]; /* info = [info0 ; info1] */

 double *d_A = NULL; /* lda-by-n-by-batchSize */
 double *d_U = NULL; /* ldu-by-m-by-batchSize */
 double *d_V = NULL; /* ldv-by-n-by-batchSize */
 double *d_S = NULL; /* minmn-by-batchSizee */
 int* d_info = NULL; /* batchSize */
 int lwork = 0; /* size of workspace */
 double *d_work = NULL; /* device workspace for gesvdjBatched */

 const double tol = 1.e-7;
 const int max_sweeps = 15;
 const int sort_svd = 0; /* don't sort singular values */
 const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute singular
 vectors */

/* residual and executed_sweeps are not supported on gesvdjBatched */
 double residual = 0;
 int executed_sweeps = 0;

 double *A0 = A;
 double *A1 = A + lda*n; /* Aj is m-by-n */
/*
 * | 1 -1 |
 * A0 = | -1 2 |
 * | 0 0 |
 * A0 is column-major
 */
 A0[0 + 0*lda] = 1.0;
 A0[1 + 0*lda] = -1.0;
 A0[2 + 0*lda] = 0.0;

 A0[0 + 1*lda] = -1.0;
 A0[1 + 1*lda] = 2.0;
 A0[2 + 1*lda] = 0.0;

/*
 * | 3 4 |
 * A1 = | 4 7 |
 * | 0 0 |
 * A1 is column-major
 */
 A1[0 + 0*lda] = 3.0;
 A1[1 + 0*lda] = 4.0;
 A1[2 + 0*lda] = 0.0;

 A1[0 + 1*lda] = 4.0;
 A1[1 + 1*lda] = 7.0;
 A1[2 + 1*lda] = 0.0;

 printf("example of gesvdjBatched \n");
 printf("m = %d, n = %d \n", m, n);
 printf("tol = %E, default value is machine zero \n", tol);
 printf("max. sweeps = %d, default value is 100\n", max_sweeps);

 printf("A0 = (matlab base-1)\n");
 printMatrix(m, n, A0, lda, "A0");
 printf("A1 = (matlab base-1)\n");
 printMatrix(m, n, A1, lda, "A1");
 printf("=====\n");

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 269

configure parameters of gesvdj

/* step 1: create cusolver handle, bind a stream */
 status = cusolverDnCreate(&cusolverH);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
 assert(cudaSuccess == cudaStat1);

 status = cusolverDnSetStream(cusolverH, stream);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of gesvdj */
 status = cusolverDnCreateGesvdjInfo(&gesvdj_params);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
 status = cusolverDnXgesvdjSetTolerance(
 gesvdj_params,
 tol);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
 status = cusolverDnXgesvdjSetMaxSweeps(
 gesvdj_params,
 max_sweeps);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* disable sorting */
 status = cusolverDnXgesvdjSetSortEig(
 gesvdj_params,
 sort_svd);
 assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
 cudaStat1 = cudaMalloc ((void**)&d_A , sizeof(double)*lda*n*batchSize);
 cudaStat2 = cudaMalloc ((void**)&d_U , sizeof(double)*ldu*m*batchSize);
 cudaStat3 = cudaMalloc ((void**)&d_V , sizeof(double)*ldv*n*batchSize);
 cudaStat4 = cudaMalloc ((void**)&d_S , sizeof(double)*minmn*batchSize);
 cudaStat5 = cudaMalloc ((void**)&d_info, sizeof(int)*batchSize);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);
 assert(cudaSuccess == cudaStat5);

 cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n*batchSize,
 cudaMemcpyHostToDevice);
 cudaStat2 = cudaDeviceSynchronize();
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 270

call batched singular value solver

/* step 4: query working space of gesvdjBatched */
 status = cusolverDnDgesvdjBatched_bufferSize(
 cusolverH,
 jobz,
 m,
 n,
 d_A,
 lda,
 d_S,
 d_U,
 ldu,
 d_V,
 ldv,
 &lwork,
 gesvdj_params,
 batchSize
);
 assert(CUSOLVER_STATUS_SUCCESS == status);

 cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
 assert(cudaSuccess == cudaStat1);

/* step 5: compute singular values of A0 and A1 */
 status = cusolverDnDgesvdjBatched(
 cusolverH,
 jobz,
 m,
 n,
 d_A,
 lda,
 d_S,
 d_U,
 ldu,
 d_V,
 ldv,
 d_work,
 lwork,
 d_info,
 gesvdj_params,
 batchSize
);
 cudaStat1 = cudaDeviceSynchronize();
 assert(CUSOLVER_STATUS_SUCCESS == status);
 assert(cudaSuccess == cudaStat1);

 cudaStat1 = cudaMemcpy(U , d_U , sizeof(double)*ldu*m*batchSize,
 cudaMemcpyDeviceToHost);
 cudaStat2 = cudaMemcpy(V , d_V , sizeof(double)*ldv*n*batchSize,
 cudaMemcpyDeviceToHost);
 cudaStat3 = cudaMemcpy(S , d_S , sizeof(double)*minmn*batchSize,
 cudaMemcpyDeviceToHost);
 cudaStat4 = cudaMemcpy(&info, d_info, sizeof(int) * batchSize ,
 cudaMemcpyDeviceToHost);
 assert(cudaSuccess == cudaStat1);
 assert(cudaSuccess == cudaStat2);
 assert(cudaSuccess == cudaStat3);
 assert(cudaSuccess == cudaStat4);

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 271

check the result

 for(int i = 0 ; i < batchSize ; i++){
 if (0 == info[i]){
 printf("matrix %d: gesvdj converges \n", i);
 }else if (0 > info[i]){
/* only info[0] shows if some input parameter is wrong.
 * If so, the error is CUSOLVER_STATUS_INVALID_VALUE.
 */
 printf("Error: %d-th parameter is wrong \n", -info[i]);
 exit(1);
 }else { /* info = m+1 */
/* if info[i] is not zero, Jacobi method does not converge at i-th matrix. */
 printf("WARNING: matrix %d, info = %d : gesvdj does not converge
 \n", i, info[i]);
 }
 }

/* Step 6: show singular values and singular vectors */
 double *S0 = S;
 double *S1 = S + minmn;
 printf("==== \n");
 for(int i = 0 ; i < minmn ; i++){
 printf("S0(%d) = %20.16E\n", i+1, S0[i]);
 }
 printf("==== \n");
 for(int i = 0 ; i < minmn ; i++){
 printf("S1(%d) = %20.16E\n", i+1, S1[i]);
 }
 printf("==== \n");

 double *U0 = U;
 double *U1 = U + ldu*m; /* Uj is m-by-m */
 printf("U0 = (matlab base-1)\n");
 printMatrix(m, m, U0, ldu, "U0");
 printf("U1 = (matlab base-1)\n");
 printMatrix(m, m, U1, ldu, "U1");

 double *V0 = V;
 double *V1 = V + ldv*n; /* Vj is n-by-n */
 printf("V0 = (matlab base-1)\n");
 printMatrix(n, n, V0, ldv, "V0");
 printf("V1 = (matlab base-1)\n");
 printMatrix(n, n, V1, ldv, "V1");

Examples of Singular Value Decomposition

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 272

cannot query residual and executed sweeps

/*
 * The folowing two functions do not support batched version.
 * The error CUSOLVER_STATUS_NOT_SUPPORTED is returned.
 */
 status = cusolverDnXgesvdjGetSweeps(
 cusolverH,
 gesvdj_params,
 &executed_sweeps);
 assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

 status = cusolverDnXgesvdjGetResidual(
 cusolverH,
 gesvdj_params,
 &residual);
 assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

/* free resources */
 if (d_A) cudaFree(d_A);
 if (d_U) cudaFree(d_U);
 if (d_V) cudaFree(d_V);
 if (d_S) cudaFree(d_S);
 if (d_info) cudaFree(d_info);
 if (d_work) cudaFree(d_work);

 if (cusolverH) cusolverDnDestroy(cusolverH);
 if (stream) cudaStreamDestroy(stream);
 if (gesvdj_params) cusolverDnDestroyGesvdjInfo(gesvdj_params);

 cudaDeviceReset();

 return 0;
}

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 273

Appendix G.
ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

‣ CPU LAPACK routines from netlib, LAPACK 3.5.0 (http://www.netlib.org/lapack/)

The following is license of LAPACK (modified BSD license).

Copyright (c) 1992-2013 The University of Tennessee and The University of Tennessee
Research Foundation. All rights reserved.

Copyright (c) 2000-2013 The University of California Berkeley. All rights reserved.

Copyright (c) 2006-2013 The University of Colorado Denver. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/
or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

The copyright holders provide no reassurances that the source code provided does not
infringe any patent, copyright, or any other intellectual property rights of third parties.
The copyright holders disclaim any liability to any recipient for claims brought against
recipient by any third party for infringement of that parties intellectual property rights.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

Acknowledgements

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 274

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

www.nvidia.com
cuSOLVER Library DU-06709-001_v9.0 | 275

Appendix H.
BIBLIOGRAPHY

[1] Timothy A. Davis, Direct Methods for sparse Linear Systems, siam 2006.

[2] E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices,
ACM '69 Proceedings of the 1969 24th national conference, Pages 157-172.

[3] Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node
Finder, ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept.
1979 Pages 284-295.

[4] J. R. Gilbert and T. Peierls, Sparse partial pivoting in time proportional to arithmetic
operations, SIAM J. Sci. Statist. Comput., 9 (1988), pp. 862-874.

[5] Alan George and Esmond Ng, An Implementation of Gaussian Elimination with
Partial Pivoting for Sparse Systems, SIAM J. Sci. and Stat. Comput., 6(2), 390-409.

[6] Alan George and Esmond Ng, Symbolic Factorization for Sparse Gaussian
Elimination with Paritial Pivoting, SIAM J. Sci. and Stat. Comput., 8(6), 877-898.

[7] John R. Gilbert, Xiaoye S. Li, Esmond G. Ng, Barry W. Peyton, Computing Row
and Column Counts for Sparse QR and LU Factorization, BIT 2001, Vol. 41, No. 4, pp.
693-711.

[8] Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum
Degree Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905,
Dec. 1996.

[9] Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree
Algorithm Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6,
No. 3, September 1980, page 337-358.

[10] Alan George, Joseph W. Liu, Computer Solution of Large Sparse Positive Definite
Systems, Englewood Cliffs, New Jersey: Prentice-Hall, 1981.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2014-2017 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	1.1. cuSolverDN: Dense LAPACK
	1.2. cuSolverSP: Sparse LAPACK
	1.3. cuSolverRF: Refactorization
	1.4. Naming Conventions
	1.5. Asynchronous Execution
	1.6. Library Property
	1.7. Link Openmp

	Using the cuSolver API
	2.1. Thread Safety
	2.2. Scalar Parameters
	2.3. Parallelism with Streams

	cuSolver Types Reference
	3.1. cuSolverDN Types
	3.1.1. cusolverDnHandle_t
	3.1.2. cublasFillMode_t
	3.1.3. cublasOperation_t
	3.1.4. cusolverEigType_t
	3.1.5. cusolverEigMode_t
	3.1.6. cusolverStatus_t

	3.2. cuSolverSP Types
	3.2.1. cusolverSpHandle_t
	3.2.2. cusparseMatDescr_t
	3.2.3. cusolverStatus_t

	3.3. cuSolverRF Types
	3.3.1. cusolverRfHandle_t
	3.3.2. cusolverRfMatrixFormat_t
	3.3.3. cusolverRfNumericBoostReport_t
	3.3.4. cusolverRfResetValuesFastMode_t
	3.3.5. cusolverRfFactorization_t
	3.3.6. cusolverRfTriangularSolve_t
	3.3.7. cusolverRfUnitDiagonal_t
	3.3.8. cusolverStatus_t

	cuSolver Formats Reference
	4.1. Index Base Format
	4.2. Vector (Dense) Format
	4.3. Matrix (Dense) Format
	4.4. Matrix (CSR) Format
	4.5. Matrix (CSC) Format

	cuSolverDN: dense LAPACK Function Reference
	5.1. cuSolverDN Helper Function Reference
	5.1.1. cusolverDnCreate()
	5.1.2. cusolverDnDestroy()
	5.1.3. cusolverDnSetStream()
	5.1.4. cusolverDnGetStream()
	5.1.5. cusolverDnCreateSyevjInfo()
	5.1.6. cusolverDnDestroySyevjInfo()
	5.1.7. cusolverDnXsyevjSetTolerance()
	5.1.8. cusolverDnXsyevjSetMaxSweeps()
	5.1.9. cusolverDnXsyevjSetSortEig()
	5.1.10. cusolverDnXsyevjGetResidual()
	5.1.11. cusolverDnXsyevjGetSweeps()
	5.1.12. cusolverDnCreateGesvdjInfo()
	5.1.13. cusolverDnDestroyGesvdjInfo()
	5.1.14. cusolverDnXgesvdjSetTolerance()
	5.1.15. cusolverDnXgesvdjSetMaxSweeps()
	5.1.16. cusolverDnXgesvdjSetSortEig()
	5.1.17. cusolverDnXgesvdjGetResidual()
	5.1.18. cusolverDnXgesvdjGetSweeps()

	5.2. Dense Linear Solver Reference
	5.2.1. cusolverDn<t>potrf()
	5.2.2. cusolverDn<t>potrs()
	5.2.3. cusolverDn<t>getrf()
	5.2.4. cusolverDn<t>getrs()
	5.2.5. cusolverDn<t>geqrf()
	5.2.6. cusolverDn<t>ormqr()
	5.2.7. cusolverDn<t>orgqr()
	5.2.8. cusolverDn<t>sytrf()

	5.3. Dense Eigenvalue Solver Reference
	5.3.1. cusolverDn<t>gebrd()
	5.3.2. cusolverDn<t>orgbr()
	5.3.3. cusolverDn<t>sytrd()
	5.3.4. cusolverDn<t>ormtr()
	5.3.5. cusolverDn<t>orgtr()
	5.3.6. cusolverDn<t>gesvd()
	5.3.7. cusolverDn<t>gesvdj()
	5.3.8. cusolverDn<t>gesvdjBatched()
	5.3.9. cusolverDn<t>syevd()
	5.3.10. cusolverDn<t>sygvd()
	5.3.11. cusolverDn<t>syevj()
	5.3.12. cusolverDn<t>sygvj()
	5.3.13. cusolverDn<t>syevjBatched()

	cuSolverSP: sparse LAPACK Function Reference
	6.1. Helper Function Reference
	6.1.1. cusolverSpCreate()
	6.1.2. cusolverSpDestroy()
	6.1.3. cusolverSpSetStream()
	6.1.4. cusolverSpXcsrissym()

	6.2. High Level Function Reference
	6.2.1. cusolverSp<t>csrlsvlu()
	6.2.2. cusolverSp<t>csrlsvqr()
	6.2.3. cusolverSp<t>csrlsvchol()
	6.2.4. cusolverSp<t>csrlsqvqr()
	6.2.5. cusolverSp<t>csreigvsi()
	6.2.6. cusolverSp<t>csreigs()

	6.3. Low Level Function Reference
	6.3.1. cusolverSpXcsrsymrcm()
	6.3.2. cusolverSpXcsrsymmdq()
	6.3.3. cusolverSpXcsrsymamd()
	6.3.4. cusolverSpXcsrperm()
	6.3.5. cusolverSpXcsrqrBatched()

	6.4. cuda 7.5 Preview
	6.4.1. cusolverSpXcsrlu()
	6.4.1.1. cusolverSpCreateCsrluInfo()
	6.4.1.2. cusolverSpXcsrluAnalysis()
	6.4.1.3. cusolverSpXcsrluBufferInfo()
	6.4.1.4. cusolverSpXcsrluFactor()
	6.4.1.5. cusolverSpXcsrluZeroPivot()
	6.4.1.6. cusolverSpXcsrluSolve()
	6.4.1.7. cusolverSpXcsrluExtract()

	6.4.2. cusolverSpXcsrqr()
	6.4.2.1. cusolverSpCreateCsrqrInfo()
	6.4.2.2. cusolverSpXcsrqrAnalysis()
	6.4.2.3. cusolverSpXcsrqrBufferInfo()
	6.4.2.4. cusolverSpXcsrqrSetup()
	6.4.2.5. cusolverSpXcsrqrFactor()
	6.4.2.6. cusolverSpXcsrqrZeroPivot()
	6.4.2.7. cusolverSpXcsrqrSolve()

	6.4.3. cusolverSpXcsrchol()
	6.4.3.1. cusolverSpCreateCsrcholInfo()
	6.4.3.2. cusolverSpXcsrcholAnalysis()
	6.4.3.3. cusolverSpXcsrcholBufferInfo()
	6.4.3.4. cusolverSpXcsrcholFactor()
	6.4.3.5. cusolverSpXcsrcholZeroPivot()
	6.4.3.6. cusolverSpXcsrcholSolve()

	cuSolverRF: Refactorization Reference
	7.1. cusolverRfAccessBundledFactors()
	7.2. cusolverRfAnalyze()
	7.3. cusolverRfSetupDevice()
	7.4. cusolverRfSetupHost()
	7.5. cusolverRfCreate()
	7.6. cusolverRfExtractBundledFactorsHost()
	7.7. cusolverRfExtractSplitFactorsHost()
	7.8. cusolverRfDestroy()
	7.9. cusolverRfGetMatrixFormat()
	7.10. cusolverRfGetNumericProperties()
	7.11. cusolverRfGetNumericBoostReport()
	7.12. cusolverRfGetResetValuesFastMode()
	7.13. cusolverRfGet_Algs()
	7.14. cusolverRfRefactor()
	7.15. cusolverRfResetValues()
	7.16. cusolverRfSetMatrixFormat()
	7.17. cusolverRfSetNumericProperties()
	7.18. cusolverRfSetResetValuesFastMode()
	7.19. cusolverRfSetAlgs()
	7.20. cusolverRfSolve()
	7.21. cusolverRfBatchSetupHost()
	7.22. cusolverRfBatchAnalyze()
	7.23. cusolverRfBatchResetValues()
	7.24. cusolverRfBatchRefactor()
	7.25. cusolverRfBatchSolve()
	7.26. cusolverRfBatchZeroPivot()

	cuSolverRF Examples
	A.1. cuSolverRF In-memory Example
	A.2. cuSolverRF-batch Example

	CSR QR Batch Examples
	B.1. Batched Sparse QR example 1
	B.2. Batched Sparse QR example 2

	QR Examples
	C.1. QR Factorization Dense Linear Solver
	C.2. orthogonalization

	LU Examples
	D.1. LU Factorization

	Examples of Dense Eigenvalue Solver
	E.1. Standard Symmetric Dense Eigenvalue Solver
	E.2. Generalized Symmetric-Definite Dense Eigenvalue Solver
	E.3. Standard Symmetric Dense Eigenvalue Solver (via Jacobi method)
	E.4. Generalized Symmetric-Definite Dense Eigenvalue Solver (via Jacobi method)
	E.5. batch eigenvalue solver for dense symmetric matrix

	Examples of Singular Value Decomposition
	F.1. SVD with singular vectors
	F.2. SVD with singular vectors (via Jacobi method)
	F.3. batch dense SVD solver

	Acknowledgements
	Bibliography

